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ABSTRACT
Deep Learning revolutionizes almost all fields of computer science

including data management. However, the demand for high-quality

training data is slowing down deep neural nets’ wider adoption. To

this end, data augmentation (DA), which generates more labeled

examples from existing ones, becomes a common technique. Mean-

while, the risk of creating noisy examples and the large space of

hyper-parameters make DA less attractive in practice. We introduce

Rotom, a multi-purpose data augmentation framework for a range

of data management and mining tasks including entity matching,

data cleaning, and text classification. Rotom features InvDA, a new
DA operator that generates natural yet diverse augmented examples

by formulating DA as a seq2seq task. The key technical novelty of

Rotom is a meta-learning framework that automatically learns a pol-

icy for combining examples from different DA operators, whereby

combinatorially reduces the hyper-parameters space. Our exper-

imental results show that Rotom effectively improves a model’s

performance by combining multiple DA operators, even when ap-

plying them individually does not yield performance improvement.

With this strength, Rotom outperforms the state-of-the-art entity

matching and data cleaning systems in the low-resource settings as

well as two recently proposed DA techniques for text classification.
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1 INTRODUCTION
The burst of deep learning systems has led to significant advance-

ment in many fields such as natural language processing (NLP),

computer vision (CV), robotics, and more [19, 73, 93]. The database

community is no exception [42, 61, 85, 92]. For example, in data

integration, one can achieve the state-of-the-art (SOTA) accuracy
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of entity matching (EM) [49] by casting it as a sequence-pair classi-

fication task and training a deep neural net on a downstream EM

dataset. While deep learning has been proven effective, the high

demand for both the quality and quantity of training data is slowing

down deep learning systems’ wider adoption. To this end, the re-

cent success of pre-trained models [19, 41, 53] has partly addressed

this issue by allowing the developer to first pre-train a model on

a large unlabeled data corpus then fine-tune the model on a rela-

tively smaller labeled dataset of the downstream task. However, the

problem is only partially solved as the fine-tuning approach still

requires a non-trivial amount of high-quality labeled examples (e.g.,

∼10k for a typical EM application [49, 61]). Given the expensive

cost of obtaining quality labeled data, there has been significant

interest in effortless data collection [47, 69].

Motivated by the above considerations, in this paper, we study

the problem of training high-quality deep learning models while

requiring only a small number (e.g., 200) of labeled examples. We

develop a multi-purpose system, Rotom, that supports a range of

data management and mining tasks including entity matching,

data cleaning, text classification. Rotom achieves this versatility by

having a simple architecture of fine-tuning LMs, thus it can support

any tasks that can be formulated as sequence classification.

Rotom reduces its requirement of labeled data via Data Aug-

mentation (DA). Widely used in CV and NLP, DA automatically

generates additional labeled training data from existing ones. In

general, a DA operator transforms a training example into a dif-

ferent version while preserving the classification label (e.g., image

rotation for CV tasks or replacing a word with its synonyms for NLP

tasks), and thus it enlarges the training set and allows the model

to learn different invariance properties. Multiple DA operators can

be combined into a DA policy to achieve better results. Rotom ex-

ploits augmented data in a novel way following a meta-learning

paradigm as it learns a policy for selecting and assigning weights

to augmented examples to better train the target LM.

Challenges. Developing generally effective DA operators for a

wide range of applications as in Rotom is not an easy task. Belowwe

illustrate two major limiting factors of existing data augmentation

techniques and give insights into how we address them in Rotom.

First, although data augmentation is shown to be effective by

increasing the diversity of training data, it has the risk of changing

the ground-truth labels. Training with these corrupted examples

can potentially damage the quality of the target LM.

Example 1.1. Consider classifying the intent of a sentence:

Where is the Orange Bowl? [Intent: Location]

Even applying only one single DA operator can generate “wrong”

examples that do not preserve the original label. For example, if
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one simply replaces the word “where” with another interrogative

pronoun “what”, the resulting sentence will have a different mean-

ing and the intent becomes asking for a description. Similarly, if

one inserts the word “from” after “bowl”, which is very likely to

happen when using a language model to predict the insertion, the

question intent will also become asking for a description. It will be

more likely to get “wrong” examples if one applies a sequence of

DA operators to get more diverse augmented examples.

Restricting DA operators to those with the least risk of changing

themeaning of the sentence (e.g., replacing awordwith its synonym

from a dictionary) can avoid this issue, but will generate examples

that are almost the same as the original ones and thus lead to less

performance gain. Therefore, there is a trade-off between diversity

and quality for data augmentation: for methods that generate more

diverse examples like applying multiple operators at one time, the

risk of label corruption is higher [86]. Tuning this trade-off is im-

portant to improve the performance of the model. Rotom addresses

this challenge by (1) introducing a new DA operator, InvDA, which
can generate diverse yet natural examples by formulating DA as a

seq2seq problem; and (2) devising a filtering/weighting model that

selects the good augmented examples from the pool of potentially

corrupted augmentations.

Second, it is non-trivial to find the most effective DA opera-

tors or policies. DA operators often introduce a new set of hyper-

parameters. For example, a simple word replacement transforma-

tion has at least two hyper-parameters: (1) the sampling method to

choose the word to be replaced and (2) dictionary [59] or similarity-

based method [60] for choosing the synonyms for replacement.

In practice, the developer needs to keep trying combinations and

re-training the model until the result is satisfactory. This process is

inefficient and relies on heuristics, often resulting in a sub-optimal

choice. There have been efforts on automatically searching for ef-

fective DA policies [16, 51] in CV. However, these search algorithms

are usually fixed to a template [32, 44], e.g., two sequential simple

transformations, thus does not support operators beyond simple

transformations, nor prevents them from generating bad examples.

We address this challenge by considering a more general setting:

instead of combining DA operators, Rotom combines augmented
examples generated by multiple DA operators. The operators can be

simple transformations, generation-based operators such as InvDA,
or any complex learned operators. Without manual tuning of hyper-

parameters, Rotom leverages meta-learning to automatically learn

an optimized policy for (1) filtering out noisy augmentations and

(2) re-weighting the remaining examples based on their importance.

As a result, Rotom effectively selects and combines the high-quality

portion from each operator to better train the target model.

Contributions.Wemake the following contributions in this paper.

• We present Rotom, a multi-purposed data augmentation system

for a range of data management andmining tasks including entity

matching, data cleaning, and text classification. Rotom models

these tasks as sequence classification and solves them by fine-

tuning pre-trained language models (LMs) such as BERT [19].

The architecture of Rotom is depicted in Figure 1.
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Figure 1: The Rotom DA framework for entity matching, error de-
tection, text classification, and more. The InvDA operator of Rotom
learns a seq2seq DA model via reconstructing corrupted unlabeled
sequences. Rotom also features a semi-supervised meta-learning
framework for filtering and weighting augmented and unlabeled
examples. The filtering+weighting models are jointly trained with
the target model by descending to a low validation loss.

• We introduce in Rotom a versatile data augmentation operator

InvDA. Based on a seq2seq generative model, InvDA can gen-

erate natural and diverse augmented sequences arbitrarily dif-

ferent from the original sequence. Through a fully automated

self-training process, we allow InvDA to learn how to augment

by inverting the effect of multiple simple transformations.

• Rotom features ameta-learning framework that filters andweights

a large number of augmented examples to assemble them into

high-quality training signals. Instead of hand-crafting a DA pol-

icy, Rotom automatically optimizes the filtering/weighting model

jointly with the target model. As a result, the filtering/weighting

model “learns” how to better select and combine the augmented

examples to improve the overall performance of the target model,

thus addresses the diversity-quality trade-off in DA.

• We show that Rotom can be naturally extended to the semi-
supervised learning (SSL) setting to exploit the large amount of

unlabeled data. While the substantial quality variance of the

guessed labels is a major challenge in traditional SSL, the meta-

learning framework enablesRotom to select only the high-quality

guesses, thus further boost the performance of the target model.

• We conducted extensive experiments to evaluateRotom on bench-

mark datasets across all 3 supported tasks. Our experimental

results show that Rotom effectively combines simple DA opera-

tors, InvDA, and unlabeled examples even when applying them

independently does not yield a performance gain. With this ca-

pability, Rotom outperforms (1) the SOTA EM systems by up to

6% F1 score, (2) the SOTA error detection system by 7.64% F1,

and (3) two recent low-resource text classification techniques.

Paper outline. The rest of the paper is organized as follows. Sec-

tion 2 reviews the supported tasks and Section 3 presents the InvDA
operator. We introduce our meta-learning framework in Section 4.



We extend this framework to the semi-supervised setting in Section

5. Section 6 presents the experimental results. Finally, we discuss

related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES
In this section, we first review and formally define the tasks con-

sidered in our paper. Next, we introduce a baseline method of fine-

tuning pre-trained language models (LMs) for these tasks. We also

summarize the basic data augmentation operators which generate

additional training data for optimizing the fine-tuning baseline.

2.1 Problem definition: sequence classification
for entity matching and data cleaning

Rotom targets tasks of a general form of multi-class sequence clas-

sification. Formally,

Definition 2.1 (Sequence classification). Let 𝑉 = {𝑐1, . . . , 𝑐𝑘 } be a
vocabulary of class labels. A sequence classifier𝑀 takes as input a

sequence of tokens 𝑆 = [𝑡1, . . . , 𝑡𝑛] and outputs a label 𝑀 (𝑆) ∈ 𝑉
of the input sequence 𝑆 .

The above definition is commonly used to formulate the text
classification problem in NLPwhich has a wide range of applications.

For example, in sentiment analysis, the input sequence can be a

product review, and the classifier predicts the binary sentiment

class (i.e., positive or negative) of the review. Table 1 summarizes a

few examples of applications of text classification.

Table 1: Example text classification tasks in NLP.

NLP Task Input Example Vocabulary

Sentiment Analysis Product review {1-star, 2-star, . . . , 5-star}

Topic Modeling News article {Politics, Sports, Technology, . . . }

Intent Classification NL query {Purchase, Subscribe, Inquiry, . . . }

While the above setting is most commonly used in NLP, it also

applies to many data management tasks. Next, we review two such

tasks: entity matching and data cleaning.
Entity matching (EM). Given two collections of data entries,

EM [12] seeks to identify pairs of data entries that refer to the

same real-world entity. An EM workflow [37] has two main steps:

blocking and matching. The blocking phase typically uses simple

heuristics (e.g., a pair of matching records must share at least 1

token) to identify a relatively small set of candidate pairs. Next,

the matching phase classifies whether each candidate pair is a real

match or not. Formally, suppose that each data entry 𝑒 is represented

by a set of key-value pairs {(attr𝑖 , val𝑖 )}1≤𝑖≤𝑚 . Given a pair of data

entries (𝑒, 𝑒 ′), a matching model𝑀 outputs a label in {0, 1} where
𝑀 (𝑒, 𝑒 ′) = 1 if (𝑒, 𝑒 ′) is a match and 0 otherwise.

The matching problem can be effectively solved by formulating

it as a sequence classification task [49]. Following [49], we serialize

and concatenate all attributes/values from both entries into a sin-

gle sequence. For example, consider two entries {Name: “Google
LLC”, phone: “(866) 246-6453”} and {Name: “Alphabet inc”, phone:
“6502530000”}, we can serialize them as

“[COL] Name [VAL] Google LLC [COL] phone [VAL] (866) 246-6453 [SEP]
[COL] Name [VAL] Alphabet inc [COL] phone [VAL] 6502530000”

then we can apply the sequence classification techniques to solve

the matching task. Note that we insert special tokens [COL] and
[VAL] to indicate the starts of an attribute or a value. The special

token [SEP] separates the two entries.

Data cleaning. Given a collection of relational tables, the goal of

data cleaning [29, 33, 54, 55] is to identify and repair any errors

in the tables such as typos, data formatting errors, or constraint

violations. We focus on the first part of the problem of identifying

erroneous entries, which is also known as error detection [29, 55].

Table 2 shows an example instance of the error detection problem.

Table 2: Error Detection in an employer table (errors are in red).

Name Address phone

Google LLC 1600 amphitheatre pkwy (877) 355-578

AlphaBet inc. 1600amphiteatrepkwy 6502530000

Apple Inc. One Infinite Loop (408) 606-5775

In Rotom, we cast error detection into sequence classification

like for EM. We can serialize the cell value that we would like to

check for correctness by concatenating with special tokens. For

example, for the last cell of Table 2, we generate the sequence

“[COL] phone [VAL] 6502530000”. To detect context-independent
errors, i.e., errors related only to the cell value, we can use this

string as the input to the sequence classifier. For context-dependent
errors, we serialize the entire row as the “context” and append to

the end the cell of interest (separated by “[SEP]”). For example,

“[COL] Name [VAL] Apple Inc. [COL] Address [VAL] One Infinite Loop
[COL] phone [VAL] (408)606-5775 [SEP] [COL] phone [VAL] (408)606-5775”

Discussion on serializing data entries. Because of its simple for-

mulation, Rotom supports any tasks that can be cast into sequence

classification. This makes Rotom a flexible solution. For example,

as shown in [49], serializing data entries for EM allows the input

entities to have arbitrary schema thus it does not require schema

alignment before matching. However, serialization does not always

yield the best performance. In error detection, for example, there

can be error types that violate table-level constraints such as ag-

gregate constraints and functional dependencies. Capturing such

constraints requires serializing the whole table which can easily

exceed the max sequence length allowed by the LM. In this sense,

Rotom is better at tasks serializable to sequences that are mostly

textual and of medium length (e.g., hundreds of tokens).

2.2 Baseline: fine-tuning language models
Fine-tuning pre-trained language models (LMs) has been shown

a simple yet effective method for sequence classification [19, 67].

Pre-trained LMs such as BERT [19] and GPT-2/3 [8, 66] have demon-

strated good performance on a wide range of NLP tasks. These mod-

els are typically neural nets consisting of Transformer layers [83],

typically 12 or 24 layers, and pre-trained on large text corpora such

as Wikipedia by self-supervised learning. During pre-training, the

model is self-trained to perform auxiliary tasks such as missing

token and next-sentence prediction which allows the model to learn

to capture the lexical or semantic meanings of the input sequences.

One can leverage the pre-trained LM in a downstream task by

fine-tuning it on a task-specific training set. For sequence classifi-

cation, this can be done by the following steps:
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Figure 2: The model architecture of a pre-trained LM in Rotom.

(1) Add task-specific layers after the last layer of the LM. Specifi-

cally, we add a fully connected layer whose output dimension

equals to the number of classes and a softmax classifier as the

final layer to perform multi-class classification.

(2) Initialize the modified network N with parameters from the

pre-trained LM.

(3) Train N on the training set until convergence.

Figure 2 shows the model architecture of an LM. The model

consists of (1) a token embedding layer, (2) the Transformer layers

which use the self-attention mechanism to capture sequence se-

mantics [83], and (3) the added task-specific layers (linear followed

by softmax) for the downstream classification task. Conceptually,

the [CLS] token “summarizes” all the contextual information in the

entire sequence needed for classification as a contextualized em-

bedding vector 𝐸 ′[CLS] which can be fed to the task-specific layers

as input features for classification [19].

2.3 Simple data augmentation operators
The success of the above fine-tuning approach heavily depends on

the amount of high-quality labeled training data. When there is an

insufficient amount of training data, Data Augmentation (DA) is a

commonly used technique. For example, in computer vision, one

can obtain additional training examples by performing simple trans-

formations such as rotating or flipping on an original training image

and expect that the label of the image stays unchanged. For text

classification, such simple transformations can be insertion or dele-

tion of a single token. In a nutshell, DA consists of a transformation

operator that preserves the label of the original training example.

Besides enlarging the training set, DA improves the robustness

of the trained models against data noise as the models are forced

to “learn harder”. For example, by applying the deletion operator,

the model learns the invariance property that the meaning of a

sentence stays unchanged if a single token is dropped.

Data augmentation has been shown effective for all the 3 sup-

ported tasks of Rotom [29, 49, 86]. We summarize in Table 3 the sim-

ple augmentation operators that we have implemented in Rotom.

Each operator transforms the input sequence at a different level:

token, span, column/attribute, or entity. The sampling of the to-

kens can be uniform sampling or sampling by the importance of

each token. We measure the importance of a token by its inverse

document frequency (IDF) so that less important tokens are more

likely to be replaced/deleted. We obtain the synonyms of a token by

wordnet [60]. We note that this list is by no means complete. Users

of Rotom have the option of adding transformations customized

for a specific task.

Table 3: Simple DA operators in Rotom. Note that the attribute-level
operators (col_shuffle and col_del) only apply to EM and Error-
Detection. The entity_swap operator only applies to EM.

Operators Details

token_del Sample and delete a token

token_repl Sample a token and replace it with a synonym

token_swap Sample two tokens and swap them

token_insert Sample a token and insert to its right a synonym

span_del Sample and delete a span of tokens

span_shuffle Sample a span of tokens and shuffle their order

col_shuffle Choose two columns/attributes and swap their order

col_del Choose a column/attribute and drop it entirely

entity_swap Swap the order of the two entity records

Limitations. Several factors are limiting the effectiveness of the

above simple DA operators in practice.

• First, the examples generated by these DA operators are unnat-
ural, i.e., deviate from the original sequence distribution. For text

classification, the generated sequences may have grammar errors

and thus may be undesirable for certain tasks.

• Second, the simple DA operators fail to generate more diverse

examples while still preserving the class labels. For example, the

sequences generated by the token_repl differ from the original

sequence by at most 1 token. The span level operators might change

the sequence by too much and thus corrupts the label.

• Third, combining these DA operators introduces a large space

of hyper-parameters. The developer needs to choose from a pool

of operators together with different operator-specific options. As a

result, it became a common practice in previous work [49, 58, 86] to

only enumerate and pick the best-performing single DA operator

which can potentially lead to sub-optimal performance.

3 SEQ2SEQ DATA AUGMENTATION
Next, we introduce InvDA, a new DA operator for Rotom to gener-

ate natural yet diverse augmented sequences. InvDA is a seq2seq

model trained on a task-specific sequence corpus.

3.1 Seq2seq models
A seq2seq (sequence-to-sequence) model [80]𝑀gen takes as input

an input sequence 𝑠 and generates a new sequence 𝑡 = 𝑀gen (𝑠)
which we call the target sequence. Seq2seq models are commonly

used in NLP tasks such as Machine Translation or Text Summariza-

tion whose output is an entire sequence instead of a class label (i.e.,

these tasks are generative instead of discriminative). The model typ-

ically consists of an encoder and a decoder, where the encoder takes

𝑠 andmaps it to a fixed-size vector representation, while the decoder

predicts tokens sequentially based on this vector representation to

generate a target sequence 𝑡 .

Seq2seq models have been used for text data augmentation [44,

90]. The main advantage of formulating data augmentation as

a sequence generation problem is the model’s flexibility. Unlike

simple transformations that limit the number of changes to the



original sequence, a seq2seq model has an unrestricted output space

meaning that its output can be arbitrarily different from the input.

However, there are still disadvantages of using these seq2seqmodels

since they are not trained on the domain of the downstream tasks.

For example, we cannot directly apply seq2seq models for text

data [44, 90] to EM and EDT tasks, because the sequences in EM

and EDT are usually not sentences and such seq2seq models trained

on large natural language corpus may not generate sequences of

a distribution close to EM and EDT inputs. Hence, there is a need

for seq2seq-based DA methods trained on task-specific corpus to

generate more diverse sequences.

3.2 Inverse data augmentation
Next, we describe our seq2seq-based DA method InvDA. As afore-
mentioned, the InvDAmodel needs to be trained properly to ensure

the quality of the augmented sequences. The training data of a

seq2seq model consists of a collection of input-target sequence

pairs. Training a high-quality seq2seq model typically requires a

large collection of such pairs. For example, a typical EN-DE trans-

lation model [83] is trained on more than 4.5M pairs of English-

German sentence pairs of correct translations. To train InvDA for a

downstream task, ideally, one needs to provide input-target pairs

where the input is an original sequence of the task and the target

is a “good” augmentation. An augmented sequence is good if it is:

(1) semantics-preserving,

(2) coming from the same sequence distribution as the input, and

(3) different from the input sequence as much as possible.

In practice, however, such input-target pairs are hard to obtain

automatically without human annotations. Therefore, we propose

a novel self-supervision method to train the InvDA model.

The intuition behind our method is that although high-quality

augmented examples are hard to obtain, the original training ex-
amples are potentially high-quality augmentation for some input
sequences. Moreover, we can obtain those sequences by corrupt-
ing the original sequence which can be done by applying multiple

DA operators (dropping tokens, swapping token orders, etc.). We

formally describe this process in Algorithm 1.

Algorithm 1: Training inverse data augmentation
input :A training set 𝑆 ; a set 𝐷 of DA operators;

The number of operators 𝑛 to be applied;

The hyper-parameters 𝐻 (optimizer, learning rate, etc.)

output :A trained seq2seq model𝑀gen
variables :The input-target pairs 𝑃 for training𝑀gen

1 𝑃 ← ∅;
2 for sequence 𝑠 ∈ 𝑆 do
3 (input, target) ← (𝑠, 𝑠) ;

/* Corrupt 𝑠 by random augmentations */

4 for 𝑖 = 0 to 𝑛 − 1 do
5 𝑑 ← RandomSample(𝐷) ;
6 input← 𝑑 (input) ;
7 𝑃 ← 𝑃 ∪ {(input, target) };
8 𝑀gen ← Train(𝐻, 𝑃 ) ;
9 return𝑀gen;

Conceptually, the seq2seq model 𝑀gen learns how to invert or
restore the effect of corrupting a sequence by multiple simple DA op-

erators. At prediction time, we apply𝑀gen to transform an original

input sequence 𝑠 . The training examples of 𝑀gen satisfy require-

ments (2) and (3) above by construction as the target sequences

are from the original training set and can be arbitrarily different

from the input sequences by controlling the number of applied

augmentations. Requirement (1) of semantic preserving is less obvi-

ous. The intuition is that the corruption process typically “removes”

information from the input sequence (e.g., removing “sandwich”

from “I want to eat a sandwich” provides an input-target pair “I
want to eat a”-“I want to eat a sandwich” for training). At prediction
time, we can expect an inverted effect of adding information, e.g.,

given another sequence in the original training set “I want to eat
at the cafe” as input, the seq2seq model can generate “I want to eat
sandwich at the cafe” which likely preserves the meaning from the

input and is closer to the distribution of the original training set

than the output of simple DA operators. We observe this effect in

our examples in Tables 4 and 5.

Choice of models and generation methods. While the above

method allows fully automatic training of InvDA, it is still unfea-
sible to train the seq2seq model from scratch especially when the

training set 𝑆 is small. We again address this issue by leveraging pre-

trained models. The recently proposed pre-trained seq2seq models

such as BART [46], T5 [67], and GPT-3 [8] can be fine-tuned to

downstream tasks with a relatively small amount of training data.

We choose the 12-layer T5-base model [67] in our implementa-

tion because of its relatively small size and the generalizability to

multiple tasks including machine translation, summarization, and

question answering.

For other DA methods based on sequence generation, please

see Section 7 for a discussion of these techniques and comparison

with InvDA. We also compare experimentally InvDA and a previous

generation-based method [44] for text classification in Section 6.5.

3.3 Examples
We illustrate examples of InvDA in Tables 4 and 5 for the 3 supported

tasks of Rotom. For text classification, all the 3 sequences generated

by InvDA are good augmentations as they preserve the semantic

meaning of location seeking while being very different from the

original sequence in a natural way. In the error detection example,

InvDA (to our surprise) can generate natural fake movie names

from a real movie name “The DUFF” so that they preserve the

correctness of the original data entry. For EM, InvDA rewrites the

term “relational databases” into meaningful terms of “databases”,

“database systems”, and “open-source databases”. On the other hand,

we observe that sequences generated by simple transformations

are somewhat unnatural or deviate from the original meaning.

Although InvDA can generate more natural and diverse examples,

the original label is not guaranteed to be preserved, thus further

filtering and weighting the augmented examples are still necessary.

4 META-LEARNING TO SELECT AND
COMBINE AUGMENTED EXAMPLES

The performance of a machine learning model largely depends

on the data that the model is trained on. Thus, when we apply



Table 4: Example augmentations by simple DA (DA1,2) and InvDA (InvDA1-3). We highlighted the changes in green and red.

Text Classification - question intent Error Detection - cleaning movie data

original Where is the Orange Bowl ? [COL] Name [VAL] The DUFF

DA1 Where is the Orangish Bowl ? [COL] Name [VAL] DUFF

DA2 is the Orange Bowl ? [COL] Name [VAL] DUFF The

InvDA1 Where is the Indianapolis Bowl in New Orleans? [COL] Name [VAL] The DUFF (The Wrestling Wizard)

InvDA2 Where is the Orange Bowl held every February? [COL] Name [VAL] The DUFF: The Adventures of Lena Green

InvDA3 Where is the Syracuse University Orange Bowl? [COL] Name [VAL] The Duff Boy With The Devil

Table 5: Examples of InvDA for EM. The “_” symbol indicates a
deleted token from the original sequence.

EM - DBLP-ACM paper matching

original [COL] title [VAL] effective timestamping in relational databases

DA1 [COL] title [VAL] effective _ in relational databases

DA2 [COL] title [VAL] effective relational in databases timestamping

InvDA1 [COL] title [VAL] effective timestamping in databases

InvDA2 [COL] title [VAL] effective timestamping in database systems

InvDA3 [COL] title [VAL] effective timestamping in open-source databases

DA (simple transformations or InvDA), it is critically important to

ensure that the augmented examples are of high-quality. In Rotom,

we achieve this goal by formulating it as an optimization problem.

We set the optimization goal of finding a set of augmented examples
generated by any DA operators that optimizes the performance of

the target model trained on this set. Note that this is a more general

setting than selecting a subset of DA operators to apply. For a DA

operator that generates diverse and noisy examples, we expect

Rotom to separate the “good portion” from noisy examples instead

of taking or leaving all examples generated by the operator entirely.

Formally, for a language model 𝑀 and a set 𝑆 of training data,

we denote by Train(𝑀, 𝑆) the model𝑀 fine-tuned on 𝑆 :

Problem 1 (DA optimization). Given a (text classification, entity
matching, error detection) model𝑀 to be trained, a labeled training
set 𝑆train, a validation set 𝑆val, a set of DA operators 𝐷 , and a function
loss to minimize, find a subset 𝑆aug ⊆

⋃
𝑑∈𝐷 {𝑑 (𝑠) |𝑠 ∈ 𝑆train} that

minimizes loss(Train(𝑀, 𝑆aug), 𝑆val) where loss(𝑀, 𝑆) computes the
loss value of𝑀 on dataset 𝑆 .

Note that the loss is computed on the validation set. The valida-

tion set can be disjoint from the training set to avoid overfitting or

it can be the same as 𝑆train to save some labeling budget.

Connection to meta-learning. The above problem definition

is closely related to meta-learning which is the machine learning

paradigm of “learning-to-learn”. See [84] for a detailed survey. A

meta-learning algorithm typically attempts to better learn a target

task by leveraging external knowledge accumulated from the “ex-

perience” of learning similar tasks or domains. Such knowledge

can be, for example, how to better initialize [23] or update [76] the

model. For the DA optimization problem, we aim to learn a target

model 𝑀 by meta-learning the optimal policy model for selecting
and weighting augmented examples. The meta-objective, as defined

above, is to minimize the validation loss, which allows the policy

model to keep improving itself by learning from the experience of

“teaching” the target model with the augmented examples.

4.1 The filtering and weighting models
Rotom leverages a filtering model and a weighting model to select

and assemble the training data to train the target model. Intuitively,

the filtering model is a binary classifier that decides whether to

take or discard an augmented example. The weighting model then

determines the importance of the selected examples by assigning

their weights for computing the training loss.

Definition 4.1 (Filtering and Weighting). For a sequence classifica-
tion task with label vocabulary𝑉 , let 𝑒 = (𝑥, 𝑥,𝑦) be an augmented

example where 𝑥 is an original sequence, 𝑥 is an augmented se-

quence and 𝑦 ∈ 𝑉 is the class label of 𝑥 .

• A filtering model𝑀𝐹 is a binary classifier that takes as input an

augmented example 𝑒 and outputs𝑀𝐹 (𝑒) ∈ {0, 1}.
• A weighting model𝑀𝑊 is a regression model that takes an aug-

mented example 𝑒 as input and outputs weight𝑀𝑊 (𝑒) ∈ [0, 1].

Why two models? Note that in principle, one can keep only the

weighting model𝑀𝑊 and apply it to all the augmented examples.

However, this is infeasible due to the very large amount of aug-

mented data. For example, the number of augmented examples gen-

erated by the token-level transformations is at least proportional

to the training set size times the sequence length. The number of

sequences generated by InvDA can be even arbitrarily large. The

filtering model acts as a coarse-grained pre-filter to quickly removes

examples that are not desirable. The removed examples thus will

not be processed by the weighting model or the target model to

save computation resources.

The filteringmodel. For the above reason, we design the filtering
model𝑀𝐹 to be a lightweight, feature-based, single-layer percep-

tron model. The input features of𝑀𝐹 consist of the one-hot encoded

label𝑦 and the element-wise KL-divergence from the target model’s

predicted label distribution on 𝑥 to the predicted label distribution

on 𝑥 . Formally, recall that𝑀 is the target model and we denote by

𝑝𝑀 (𝑥) the probability distribution obtained by applying 𝑀 on 𝑥 .

Let𝑊𝐹 ∈ R2 |𝑉 |×2 and 𝑏𝐹 ∈ R2 be the trainable weight and bias of

the perceptron model (here we overload the notation𝑊𝐹 to also

denote the parameters of𝑊𝐹 ). The filtering model computes

𝑀𝐹 (𝑥, 𝑥,𝑦) = softmax
(
𝑊𝐹 × concat

(
𝑦, 𝑝𝑀 (𝑥) log

𝑝𝑀 (𝑥)
𝑝𝑀 (𝑥)

)
+ 𝑏𝐹

)
.

Intuitively, by using the KL-divergence as 𝑀𝐹 ’s features, we

expect the model to learn to remove augmented sequence 𝑥 that is

too different from the original sequence 𝑥 according to the current

model’s prediction. Such sequences are likely to contain too many

changes so that its semantics drifts from the original semantics.

Moreover, adding the one-hot encoded 𝑦 to the features allows the

filtering model to calibrate the strength of the filter for each class

(i.e., for cases where one class is noisier than the others).

The weighting model. After we remove the unwanted examples,

we are ready to form batches to train the target model. Given a

batch 𝐵 of augmented examples, the goal of the weighting model



𝑀𝑊 is to adjust the weights of the examples so that the target model

can be better optimized. Formally, to update the target model 𝑀 ,

we compute the weighted training loss and back-propagate:

Losstrain =
∑

(𝑥,𝑥,𝑦) ∈𝐵
CE(𝑦, 𝑝𝑀 (𝑥)) ×𝑀𝑊 (𝑥, 𝑥,𝑦) (1)

where CE(·) is the cross-entropy loss function.

The problem of assigning weights is not trivial. For example,

we expect the weighting model to assign higher weights to the

hard examples so that they are more likely to be captured by the

target model. However, selecting features for the weighting model

is much more complex than the filtering model because deciding

the “hardness” requires a lot of sequence understanding capability.

Thus, instead of manually engineering the features, we leverage

pre-trained LMs to encode an augmented sequence such that our

weighting model can access the rich features learned from pre-

training. Specifically,𝑀𝑊 consists of a language model LM𝑊 and

a single linear layer 𝐿𝑊 (whose input size is the same as the hidden

size of LM𝑊 and output size is 1). We compute𝑀𝑊 as

𝑀𝑊 (𝑥, 𝑥,𝑦) = sigmoid
(
𝐿𝑊 (LM𝑊 (𝑥))

)
+ ∥𝑝𝑀 (𝑥) − 𝑦∥2 . (2)

Note that the output of𝑀𝑊 can be greater than 1 so we need to

normalize the weights within the batch. The original sequence 𝑥 is

not used in the computation to save half of the computation.

There is a special additive term ∥𝑝𝑀 (𝑥) − 𝑦∥2 which computes

the L2 distance between the predicted probability on the augmented

𝑥 and the true label distribution 𝑦. The purpose of adding this term

is to allow the weighting model to function normally even when it

has not yet arrived at a stable state. At the beginning of the training

process, the L2 distance would dominate the LM𝑊 term because

the target model𝑀 is uncertain on most of the examples. At this

stage,𝑀𝑊 would simply assign higher weights to those examples

that are more uncertain which is in analogy to the uncertainty-

based sampling technique in active learning [77]. After a while

when the model 𝑀 fits most of the examples, the L2 distance is

expected to get close to 0. We also expect the LM𝑊 term to function

normally since it has been trained simultaneously with𝑀 (as we

shall describe next). Note that gradients are not propagated through

the L2 distance term when we update𝑀 .

Our goal of optimizing the filtering model and the weighting

model is related but not exactly the same as the classic concept of

“learning-to-learn” where the meta-learner learns how to initialize

or update the learner or the target model. In our setting, the policy

model is the meta-learner and its meta-objective is to minimize

the validation loss. Instead of learning to update the target model’s

parameters, we learn how to better prepare the target model’s input

by selecting and weighting the augmented data. Using the meta-

training algorithm described next, we jointly optimize the policy

and the target models (i.e., the meta-learner and the learner) such

that the target model keeps improving as measured by the training

loss while the policy model learns how to better select and weight

the augmented examples as measured by the validation loss.

4.2 The meta-training algorithm
Algorithm 2 shows how Rotom simultaneously trains the target

model, the filtering model, and the weighting model. The train-

ing is done in a two-phase manner that alternatively updates the

Algorithm 2:Meta-learning for Data Augmentation
input :A training set 𝑆train of augmented examples;

a validation set 𝑆val ; the learning rate 𝜂

output :The target model𝑀

variables :The filtering and weighting model,𝑀𝐹 and𝑀𝑊 ;

the training and validation loss, Losstrain and Lossval
1 Initialize𝑀 ,𝑀𝐹 , and𝑀𝑊 with pre-trained or random weights;

2 while Losstrain does not converge do
/* Get a fresh train batch and a validation batch */

3 𝐵train ← get_next_batch(𝑆train) ;
4 𝐵val ← get_next_batch(𝑆val) ;

/* Phase 1: update the target model */

5 𝐵train ← {𝑒 |𝑒 ∈ 𝐵train and𝑀𝐹 (𝑒) = 1} ; // Filter

/* Compute the weighted loss using Eq. 1 */

6 Losstrain =
∑
(𝑥,�̂�,𝑦)∈𝐵train

CE(𝑦, 𝑝𝑀 (𝑥)) ×𝑀𝑊 (𝑥, 𝑥, 𝑦) ;
7 Update𝑀 with gradient ∇𝑀 (Losstrain) ;

/* Phase 2: update 𝑀𝐹 and 𝑀𝑊 */

/* A virtual gradient descent step */

8 𝑀′ ← 𝑀 − 𝜂 · ∇𝑀 (Losstrain) ;
9 Lossval =

∑
(𝑥,𝑦)∈𝐵val

CE(𝑦, 𝑝𝑀′ (𝑥)) ;
10 Update𝑀𝐹 with gradient ∇𝑀𝐹

(Lossval) ; // Eq. 3

11 Update𝑀𝑊 with gradient ∇𝑀𝑊
(Lossval) ; // Eq. 4

12 return𝑀 ;

target model and the filtering/weight models. We note that this

algorithmic pattern is commonly seen in Reinforcement Learn-

ing [16, 32, 63, 70] and Automated Machine Learning [28, 48, 50, 52].

In the first phase (line 5-7), we apply the filtering model to assem-

ble the training batch 𝐵train. Note that in practice, 𝐵train might be

too small because of too aggressive filtering or contain multiple se-

quences generated from the same original example. We avoid such

cases by properly sampling the training set 𝑆train and refill the batch

when some augmented examples get dropped. We then compute the

weights with the weighting model𝑀𝑊 and the weighted training

loss (Losstrain) following Eq. 1. Then the loss is back-propagated to

update the target model𝑀 . We denote by ∇𝑀 (Loss) the gradient
of a tensor variable Loss with respect to the parameters of𝑀 .

In the second phase (line 8-11), we perform a “virtual” gradient

descent step to get𝑀 ′ by updating𝑀 with the gradient∇𝑀Losstrain.
So𝑀 ′ is the updated𝑀 using the current filtering and weighting

models𝑀𝐹 and𝑀𝑊 . Note that (in line 8) we overload the notation

𝑀 to denote the parameters of𝑀 . The performance of𝑀𝐹 and𝑀𝑊

is measured by the validation loss Lossval because intuitively we

can expect Lossval to descend fast if we train𝑀 with the right data

and weights. Thus, we improve𝑀𝐹 and𝑀𝑊 by updating them (line

10-11) with the gradients of Lossval with respect to their parameters.

Gradient estimation. The main challenge arises from computing

the two gradients ∇𝑀𝐹
(Lossval) and ∇𝑀𝑊

(Lossval). The gradient
∇𝑀𝐹
(Lossval) cannot be computed by a direct back-propagation

because line 5 where we apply the filtering model is not differen-

tiable. Instead, we estimate ∇𝑀𝐹
(Lossval) using the REINFORCE

estimator [87] which is also commonly used in policy-based Rein-

forcement Learning. Formally, we estimate the gradient by

ˆ∇𝑀𝐹
(Lossval) = ∇𝑀𝐹

(
Lossval ·

∑
𝑒∈𝐵train

log

(
prob(𝑀𝐹 (𝑒) = 1)

) )
(3)



where Lossval is treated as a constant with no gradient computed

and prob(𝑀𝐹 (𝑒) = 1) is the probability (as computed by 𝑀𝐹 ) of

an example 𝑒 passes the filter. We sum up the log-probability of

all the augmented examples to get the log-probability of forming

the resulting batch. Note that here we relax the deterministic out-

put 𝑀𝐹 (𝑒) to be a random variable drawn from the distribution

𝑝𝑀𝐹
(𝑒) to better optimize𝑀𝐹 with explore-and-exploit [87]. This

estimation method is less accurate because it ignores a large part of

the intermediate computation. Nevertheless, it adds only minimal

computation overhead so it aligns well with our goal of keeping

the filtering model small and efficient.

Computing∇𝑀𝑊
(Lossval) is hard because a direct back-propagation

requires computing a 2nd-order gradient (by the chain rule)

∇𝑀𝑊
(Lossval) = −𝜂∇2𝑀𝑊 ,𝑀Losstrain∇𝑀′Lossval

where Lossval is a function over parameters of𝑀 ′ and Losstrain is

a function over the parameters of𝑀𝑊 and𝑀 . A full computation

of this gradient can take time𝑂 ( |𝑀 | · |𝑀𝑊 |) which is not practical.

Instead, we follow [23, 52] to approximate the 2nd-order gradient

using finite difference. Formally, let 𝜖 be a small constant (e.g., 0.01)

and𝑀± = 𝑀 ± 𝜖∇𝑀′Lossval. We estimate ∇𝑀𝑊
(Lossval) by

ˆ∇𝑀𝑊
(Lossval) = (4)

− 𝜂
∇𝑀𝑊

(Losstrain (𝑀+, 𝑀𝑊 )) − ∇𝑀𝑊
(Losstrain (𝑀−, 𝑀𝑊 ))

2𝜖

where Losstrain (𝑀±, 𝑀𝑊 ) denotes the training loss computed us-

ing the modified target models 𝑀± and the same augmented ex-

amples’ weights generated by𝑀𝑊 . This gradient estimation only

requires first-order gradients thus can be computed efficiently in

𝑂 ( |𝑀 | + |𝑀𝑊 |) time with 3 forward-backward passes. We refer the

interested readers to [52] for more technical details.

5 ROTOM FOR SEMI-SUPERVISED LEARNING
Next, we show that Rotom’s meta-learning framework can be nat-

urally extended to semi-supervised learning (SSL) to leverage the

large amount of unlabeled data. To this end, Rotom adopts consis-
tency regularization, an SSL technique that was recently shown to

be successful in computer vision and NLP tasks [5, 6, 79, 89].

Consistency regularization. Intuitively, consistency regulariza-

tion leverages unlabeled data by encouraging the target model to

make consistent predictions among noisy variants of an unlabeled

example. For example, given an unlabeled product review “The best
book ever”, without knowing its sentiment label, we expect the

target model to predict its sentiment consistent with the prediction

on a similar review “The best movie ever”.
Consistency regularization achieves this effect via (1) transfor-

mation of the original unlabeled data by DA operators and (2) label

sharpening. Formally, given a set 𝑈 = {𝑥1, . . . , 𝑥𝑢 } of unlabeled
sequences, a consistency regularizer of the following form is added

to the original supervised training loss:∑
𝑥 ∈𝑈

Loss
(
sharpen

(
𝑝𝑀 (𝑥)

)
, 𝑝𝑀 (𝑥)

)
(5)

where Loss is a loss function (e.g., cross-entropy) and 𝑥 is an aug-

mented sequence of 𝑥 . The sharpen(·) function takes the current

model’s prediction as input and converts it into a distribution close

to being one-hot. The sharpen(·) term is treated as a constant ten-

sor during gradient back-propagation. We consider two variants of

the sharpen(·) function in Rotom:

sharpen_v1(𝑝,𝑇 )𝑖 = 𝑝
1/𝑇
𝑖

/ |𝑉 |∑
𝑗=1

𝑝
1/𝑇
𝑗

, for 𝑖 ∈ [1, . . . , |𝑉 |], (6)

sharpen_v2(𝑝, 𝜃 )𝑖 = 1(𝑝𝑖 ≥ 𝜃 ), for 𝑖 ∈ [1, . . . , |𝑉 |] . (7)

The first variant (Eq. 6) is used in [5, 6, 89] with a hyper-parameter

𝑇 to control how close the output is to a one-hot distribution (the

smaller the closer for 𝑇 ∈ (0, 1]). The second variant (Eq. 7) is

commonly known as pseudo-labeling [45, 79] which directly assigns
𝑥 with the label argmax(𝑝𝑀 (𝑥)) if the maximal confidence is above

the threshold 𝜃 (for 𝜃 > 1/|𝑉 |). Rotom combines guessed labels

generated by both variants of sharpen.
Similar to DA, themain challenge in consistency regularization is

that not all the unlabeled examples are equally helpful to the target

model. For example, the guessed label sharpen
(
𝑝𝑀 (𝑥)

)
might be

wrong because the target model𝑀 is not yet stable. The augmented

example 𝑥 might not preserve the label either. These are exactly

cases where our meta-learning framework comes in handy.

Extending the meta-learning framework. Intuitively, Rotom
incorporates unlabeled data by applying the weighting model𝑀𝑊

on both the labeled and unlabeled data. We simply need to modify

Algorithm 2 as follows:

• Line 5: we add to the training batch 𝐵train a batch of unlabeled

examples 𝐵unlabeled ⊆ 𝑈 of size equal to |𝐵train |;
• Line 6: when computing the weight of each example, replace 𝑦

with the guessed label, sharpen
(
𝑝𝑀 (𝑥)

)
.

Note that we do not apply the filtering model on the unlabeled data

to avoid label imbalance. This is because the filtering model can

remove significantly more unlabeled examples from one class than

the others (possibly because the class has fewer labels) causing the

less confident class to be further imbalanced.

One immediate advantage of applying the meta-learning frame-

work is that Rotom can assign low weights to the unlabeled ex-

amples at the beginning of the training process and later increase

the weights as the model is trained. This is typically a hard-coded

strategy in existing SSL algorithms and requires tuning hyper-

parameters (e.g., at what condition the model should start using the

unlabeled data), but now this becomes fully automated in Rotom.

6 EXPERIMENTS
Next, we present the experiment results on benchmark datasets for

Entity Matching (EM), Error Detection (EDT), and Text Classifica-

tion (TextCLS). Our results show that Rotom effectively combines

simple DA operators and the InvDA operator even when some of

them do not yield performance gain when applied independently.

With this strength, in the low-resource settings, Rotom outperforms

the state-of-the-art (SOTA) EM systems by up to 6% F1 score and the

SOTA error detection system by 7.64% of average F1 score. Rotom
also outperforms two recent NLP data augmentation methods in

TextCLS tasks. Our training time analysis shows that Rotom’s meta-

learning framework introduces an overhead to the baseline of LM

fine-tuning much smaller than the hyper-parameter space.



6.1 Implementation and baselines
We implemented Rotom in PyTorch [65] and with the Transformers

library [88]. We used the 12-layer RoBERTa [53] model in the EM

and EDT experiments and used the uncased DistilBERT [74] and

BERT [19] model in TextCLS. Across all experiments, we set the

batch size to be 32, learning rate to be 3e-5 and the max sequence

length to be 128. In each run, we fine-tune the LM (and components

of Rotom) with the Adam optimizer for at most 40 epochs (or less

if provided with more training data), select the checkpoint with

the highest accuracy/F1 on the validation set, and report the test

accuracy/F1. For each dataset, we repeat the experiment 5 times

and report the average accuracy/F1. We ran all the experiments on

a p3.8xlarge AWS EC2 machine with 4 V100 GPUs (1 GPU per run).

We open-sourced Rotom at https://github.com/megagonlabs/rotom.

We evaluate and compare the following 5 methods and task-

specific baselines described in corresponding subsections:

• Baseline (RoBERTa/DistilBERT/BERT): This baselinemethod

fine-tunes the pre-trained language model (LM) on the original

training examples without any data augmentation.

• MixDA: This method applies a single DA operator listed in Table

3. We tune the DA operator as a hyper-parameter and select one

operator that generallyworkswell for each type of task (EM, EDT, or

TextCLS). At every epoch, we obtain the augmented set by randomly

transforming each training example with the operator and fine-tune

the LM on the augmented set. The DA operator is applied with the

MixDA technique [58] which interpolates the LM representation

of an augmented example with the original one to “partially” apply

the operator. This method was shown to be generally effective in

multiple tasks including EM [49, 58].

• InvDA: This method augments with the seq2seq DA operator

InvDA. To better understand the effect of InvDA, we follow the same

training procedure for MixDA except replacing the DA operator

with InvDA. Without hyper-parameter tuning, we train the InvDA
model by fine-tuning the T5 [67] pre-trained model (see Section 3)

on a set of unlabeled data for each task. For TextCLS, because of the

similarity across tasks, we fine-tune a single InvDA model using

unlabeled data from all the TextCLS tasks. We use top-k sampling

with 𝑘 = 120 over the top 98% most likely tokens [31] to generate

at most 50 unique transformed sequences from each example. We

randomly select one as the augmented sequence at each epoch.

• Rotom: This is the proposed meta-learning framework that se-

lects and weights the augmented examples to better fine-tune the

target model (See Section 4). The weightingmodel uses the same LM

architecture as the target model. In our experiments, we use Rotom
to combine the original training examples with the augmented

examples generated by InvDA and MixDA.

• Rotom+SSL: Finally, we evaluate the semi-supervised variant of

Rotom that selects andweights the unlabeled data to train the target

model. For each dataset, Rotom+SSL uses at most 10,000 uniformly

sampled unlabeled examples. We note that the performance can

potentially be further improved if we provide more unlabeled data.

6.2 Datasets
We evaluate the above systems on standard benchmark datasets of

EM, EDT, and TextCLS. We listed these datasets in Table 6 and 7.

The EM datasets are widely used in the literature [49, 61]. Each

dataset consists of labeled pairs of product or publication records

Table 6: EM and EDT datasets. For each EM dataset, we create a sam-
ple of training/validation set of size from 300 to 750 and use the orig-
inal test set for evaluation. Each EM dataset marked with a “∗” also
comes with a more challenging dirty version. For the EDT datasets,
we vary the training set size from 50 to 200 cells (no validation set).
Each test set consists of 20 uniformly sampled tuples.

EM

Dataset

#Train+

#Valid

#Test

EDT

Dataset

Test size

(#cell, #tpl)

Table size

(#tpl)

Amazon-Google 9,167 2,293 beers 220 / 20 2,410

DBLP-ACM
∗

9,890 2,473 hospital 400 / 20 1,000

DBLP-Scholar
∗

22,965 5,742 movies 340 / 20 7,390

Walmart-Amazon
∗

8,193 2,049 rayyan 220 / 20 1,000

Abt-Buy 7,659 1,916 tax 300 / 20 200K

Table 7: TextCLS Datasets. For each dataset, we uniformly sample a
training set and a validation set of size 100, 300, and 500 respectively.
For the first 3 large datasets, we sample a test set of size 1,000 for
more efficient evaluation. We use the original test sets otherwise.

Dataset #classes (#Train,#Test) Sample Test? Class semantics

AG 4 (120k, 7,600) yes News topic

AM-2 2 (3.6m, 400k) yes Amazon review sentiment

AM-5 5 (3m, 650k) yes Amazon review sentiment

SST-2 2 (6,920, 1,821) no Movie review sentiment

SST-5 5 (8,544, 2,210) no Movie review sentiment

TREC 6 (5,452, 500) no Open-domain question intent

ATIS 24 (4,478, 893) no Airline reservation intent

SNIPS 7 (13,084, 700) no Voice assistant intent

from different websites. The goal is to classify whether a pair of

records represent the same product/publication. For each dataset,

we uniformly sample the training set from the original train+valid

set and we vary the sample size from 300 to 750. Three of the

datasets have a dirty version available which we also use to evaluate

robustness of each method against data noise such as misplaced

attributes. To save the labeling budget, we do not create a new

validation set but simply use the training set for validation. We

measure the models’ performance by the F1 scores.

The EDT datasets are from [55]. Each dataset consists of a dirty

spreadsheet and the goal is to classify whether a cell contains an er-

ror or not. For each spreadsheet, we hold out 20 randomly sampled

rows (so up to 400 cells) for evaluation. To train Rotom and the

baseline methods, we construct a training set of size from 50 to 200

cells having the same number of clean and dirty cells (to avoid label

imbalance). Note that because of the small sample size, we do not

allocate labeling budget to create the validation set but just use the

training set for validation.We use the context-independent serializa-

tion (See Section 2) since it achieves better results on these datasets.

We measure the performance by the F1 scores for the EDT tasks.

For TextCLS, we use 8 standard NLP benchmark datasets. The

datasets are for different purposes including sentiment analysis

and intent classification. We vary the size of the training and val-

idation set (uniformly sampled) from 100 to 500 to test the label

efficiency (so the labeling budget is from 200 to 1k). We measure

the performance by the classification accuracy.

For each sample of a dataset, we treat the remaining training

examples as unlabeled for semi-supervised learning in Rotom+SSL.

https://github.com/megagonlabs/rotom
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Figure 3: Varying the labeling budgets on the EM (upper) and EDT (lower) tasks. Compared to the baselines, Rotom+SSL or Rotom achieve the
overall best performance in most cases across different labeling budgets.

Table 8: F1 scores on 5 EM datasets with at most 750 train-
ing+validation examples. The dataset names are shortened as “Abt-
Buy” → “A-B” etc. The numbers for DeepMatcher are taken from
[61] when the model is trained on the full datasets.

Method A-B A-G

D-A

clean / dirty

D-S

clean / dirty

W-A

clean / dirty

DM (full, [61]) 62.8 69.3 98.4 / 98.1 94.7 / 93.8 67.6 / 53.8

DM+RoBERTa 73.73 63.91 97.10 / 96.06 91.81 / 90.69 54.25 / 50.14

RoBERTa 78.03 53.48 95.92 / 96.11 90.31 / 91.59 64.80 / 59.69

Brunner et al. 76.63 52.33 96.09 / 96.57 91.21 / 90.76 66.48 / 59.97

MixDA 79.44 56.29 96.30 / 95.86 90.42 / 90.53 65.68 / 70.02

InvDA 81.61 56.29 95.55 / 95.99 90.58 / 90.56 68.59 / 69.64

Rotom 80.09 57.82 95.69 / 95.80 90.27 / 90.57 68.51 / 71.43
Rotom+SSL 80.53 60.38 96.61 / 95.98 92.08 / 92.21 72.52 / 70.62

6.3 Main results on Entity Matching
We compare our methods with the RoBERTa baseline, MixDA, and

the following two EM solutions:

(1) DeepMatcher (DM) [61]: DM is a classic deep learning EM

method with many follow-up works [24, 34, 38, 49, 62, 91, 95].

Instead of fine-tuning LMs, DM trains a hybrid neural net con-

sisting of RNN layers and the Attention mechanism. DM achieves

good results in multiple EM tasks but requires a significant amount

of (∼10k) training data. The reported numbers are taken directly

from [61] which are DM’s F1 scores when it is trained on the full

datasets. For fair comparison, we also consider a variant of DM

with its RNN and word embedding layers replaced by a RoBERTa

encoder. We denote this variant as DM+RoBERTa.

(2) Brunner et al. [9] for EM: In [9], Brunner et al. propose a

deep EM solution based on LMs including BERT and RoBERTa. The

model architecture is similar to Ditto but uses a different method

to serialize entity records into LMs’ input format. We consider the

RoBERTa variant of their method for a fair comparison.

Table 8 shows the F1 scores of each method using at most 750

training/validation examples. Compared to DM trained on the full

datasets, Rotom+SSL achieves an 1.9% higher average F1 (80.4 vs.

78.5) using only 6.5% of labels. This result indicates a significant

potential saving of labeling effort in creating high-quality EM solu-

tions. Compared to the RoBERTa baseline, both regular DA (MixDA)

Table 9: F1 scores on 5 error detection tasks.We reported the results
of Raha w. 20 labeled tuples and the results of Rotom (and its base-
lines) w. at most 200 labeled cells (<20 tuples, Table 6).

Method beers hospital movies rayyan tax AVG

Raha (20-tpl, [55]) 100.0 74.29 80.80 76.26 91.11 84.49

RoBERTa 98.19 53.98 49.45 70.43 89.97 72.40 (-12.09)

MixDA 97.91 70.12 55.25 70.22 84.05 75.51 (-8.98)

InvDA 96.63 100.0 61.26 79.21 98.67 87.15 (+2.66)

Rotom 99.45 100.0 69.59 86.38 98.67 90.82 (+6.33)

Rotom+SSL 98.90 100.0 81.44 80.29 100.0 92.13 (+7.64)

and InvDA effectively improve the models’ performance. InvDA

has significant effect on the A-B and W-A datasets by improving

the baseline performance by over 3%. The results also show that

Rotom+SSL effectively combines regular DA, InvDA, and the un-

labeled data as Rotom+SSL outperforms both MixDA and InvDA

in 7/8 cases by up to 6.04% (W-A). Semi-supervised learning has a

large impact for EM asRotom+SSL consistently outperformsRotom
in 7/8 cases. The other two baseline methods, DM+RoBERTa and

Brunner et al. [9], do not show a significant overall difference (<0.4

average F1) with RoBERTa. This minor difference justifies choosing

RoBERTa as the base version of Rotom for EM. Among all three

datasets that come with dirty versions, we do not observe notice-

able changes by comparing the clean/dirty F1 scores, and Rotom
can achieve a non-trivial improvement on W-A compared to base-

line methods. This result confirms that Rotom is as robust as the

baselines against data noise.

6.4 Main results on data cleaning
We compare our methods with Raha [55] and the RoBERTa base-

line for error detection. Raha is the SOTA error detection system

based on ensemble learning. Raha achieves high label efficiency

via interactive labeling of the clean/dirty tuples while Raha en-

sembles multiple error detection models. According to [55], Raha

achieves high F1 scores with only 20 tuples labeled. We use Raha’s

open-source version in our experiments.

Table 9 shows the performance of Rotom and Rotom+SSL when

using no more than 200 labeled cells. Compared to the SOTA error

detection system Raha, Rotom+SSL outperforms in 4/5 datasets and



by an average of 7.64% while using strictly fewer labeled cells. For

example, on the tax dataset, Rotom achieves a perfect F1 score (9%

higher than Raha) with 200 cells, which is only 2/3 of the labels

provided to Raha. The hospital dataset is in the same situation with

only 1/2 of the labeled cells of Raha. We also found that InvDA is

more effective than simple DA operators (>10% on average). This is

because simple transformations such as word deletion or shuffling

are likely to corrupt cells that are originally clean. InvDA produces

augmented examples that are more likely to be label-preserving.

Recall that Rotom takes in augmented examples generated by sim-

ple DA (dirty) and InvDA (clean). It is interesting that the overall

F1 still improves significantly (by >3%). Similarly, we observed that

Rotom consistently improves the performance of InvDA with dif-

ferent labeling budgets across multiple datasets (Figure 3). This

result shows that the meta-learning framework can select the right

examples for training to amplify the effectiveness of DA.

6.5 Main results on text classification
Table 10 shows the results ofRotom on the TextCLS datasets.Rotom
and Rotom+SSL show significant improvement when the labeling

budget is small. When the training/validation set size is 100, Rotom
consistently outperforms the DistilBERT baseline by 8.59% F1 on

average and up to 20% F1 (TREC). Note that MixDA is more effective

than InvDA for the TextCLS tasks which implies that increasing the

diversity of augmented examples does not help in general. MixDA

has a positive effect on 14/24 settings while InvDA is positive at

only 11/24 settings. Still, Rotom can combine them for better overall

performance achieving 20/24 improved results.

We compare in Table 11 the results of Rotomwith the BERT base-

line and two SOTA data augmentation techniques, Hu et al. [32]
and Kumar et al. [44]. Both methods perform well on a low label-

ing budget. Hu et al. [32] train a DA operator and a weighting policy

via reinforcement learning. Kumar et al. leverage LMs such as GPT-

2, BERT, or BART to generate the augmented sequences. Note that

the numbers are different from Table 10 because we change our

experiment settings to follow the exact settings in [32] and [44]: (1)

Hu et al. samples 40 training examples per class and (2) Kumar et al.

uniformly samples 1% of the training set. Both methods sample 5

examples per class for validation. IMDB is another binary sentiment

classification dataset that we exclude from our main result
1
.

These two methods are technically close to Rotom since (1) Hu

et al. learns a DA operator and a weighting policy separately via

reinforcement learning and (2) Kumar et al. fine-tunes LMs to gen-

erate augmented examples via conditional generation. Across the 6
cases, Rotom outperforms the two methods on absolute accuracy in

5/6 settings and by up to 25% (vs. Kumar et al. on TREC). Moreover,

Rotom achieves higher relative improvement to the BERT baseline

in 4/6 cases. The performance difference can be explained by:

• Compared to Hu et al., Rotom uses InvDA which can generate

diverse augmented examples while the DA operator learned by Hu

et al. modifies at most 1 token.

• Compared to Kumar et al., Rotom additionally filters/weights the

potentially noisy augmented examples from the generative LMs.

1
IMDB consists of sequences much longer than the max length of 128 which explains

the low overall accuracy in Table 11.

Table 10: Accuracy of Rotom on 8 TextCLS datasets.

Size AG AM-2 AM-5 ATIS SNIPS SST-2 SST-5 TREC AVG

Distil-

BERT

100 72.44 69.88 26.60 73.35 84.14 71.75 28.81 65.56 60.01

300 76.42 77.78 36.72 87.10 93.89 83.93 37.89 90.68 72.57

500 79.16 81.30 40.72 91.27 95.03 85.99 42.38 94.48 75.88

MixDA

100 71.76↓ 71.44↑ 27.56↑ 73.95↑ 86.94↑ 69.96↓ 28.67↓ 67.04↑ 60.80(+0.78)

300 75.62↓ 78.42↑ 34.54↓ 86.05↓ 94.03↑ 84.10↑ 39.00↑ 90.36↓ 72.36(-0.21)

500 78.94↓ 81.98↑ 40.22↓ 91.60↑ 95.20↑ 86.12↑ 43.72↑ 93.32↓ 76.02(+0.14)

InvDA

100 72.92↑ 70.76↑ 25.96↓ 72.39↓ 86.43↑ 73.50↑ 29.73↑ 63.64↓ 60.34(+0.33)

300 75.46↓ 77.60↓ 36.86↑ 85.40↓ 94.06↑ 84.92↑ 38.37↑ 89.88↓ 72.44(-0.13)

500 78.60↓ 80.20↓ 40.46↓ 91.11↓ 95.23↑ 85.29↓ 44.73↑ 94.08↓ 75.87(-0.01)

Rotom

100 74.20↑ 75.74↑ 31.24↑ 84.01↑ 92.17↑ 76.63↑ 30.83↑ 82.76↑ 67.63(+7.61)

300 75.82↓ 76.50↓ 36.82↑ 90.03↑ 94.43↑ 84.27↑ 38.46↑ 88.60↓ 72.73(+0.16)

500 78.16↓ 80.00↓ 40.22↓ 93.95↑ 95.74↑ 85.35↓ 41.99↓ 89.60↓ 75.27(-0.61)

Rotom

+SSL

100 76.18↑ 76.88↑ 30.40↑ 82.87↑ 93.20↑ 78.35↑ 32.93↑ 85.60↑ 68.60(+8.59)

300 77.66↑ 78.48↑ 34.85↓ 90.26↑ 94.91↑ 85.25↑ 40.99↑ 91.24↑ 73.71(+1.14)

500 79.34↑ 80.33↓ 39.60↓ 92.43↑ 95.81↑ 86.27↑ 44.24↑ 94.00↓ 76.10(+0.22)

Table 11: Comparing the classification accuracy of Rotom with Hu
et. al 19 [32] and Kumar et al. 20 [44]. We highlight the difference
with the BERT baseline in green/red.

IMDB SST-5 TREC SNIPS SST-2 TREC

BERT 64.90 33.47 87.76 BERT 90.77 65.00 38.12

MixDA

66.90 34.38 87.16

MixDA

90.46 67.62 39.16

+2.00 +0.91 -0.60 -0.31 +2.62 +1.04

InvDA

65.98 35.71 86.64

InvDA

91.69 64.59 30.76

+1.08 +2.24 -1.12 +0.91 -0.41 -7.36

Rotom

72.48 37.36 88.04

Rotom

92.37 73.75 62.72

+7.58 +3.89 +0.28 +1.60 +8.75 +24.60

Hu et al. 19 Kumar et al. 20

BERT 63.55 33.32 88.25 BERT 57.95 59.08 30.65

+Learned DA

65.62 37.03 89.15

+CG w. BART

81.68 63.00 37.48

+2.07 +3.71 +0.90 +23.73 +3.92 +6.83

+Weighting

64.78 36.51 89.01

+CG w. BERT

81.31 61.90 31.88

+1.23 +3.19 +0.76 +23.36 +2.82 +1.23
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Figure 4: Rotom’s training time for each domain (EM, EDT, and
TextCLS). Each point is the average over all the datasets of a domain.
The longest training time is 18.36 minutes (EM w. 750 examples).
Rotom takes on average 5.6x of the InvDA/MixDA time to train.

6.6 Training time
Unlike other DA solutions based on Reinforcement Learning which

can take tens to thousands of GPU hours to train [16, 28, 51], Rotom
can be trained inminutes. Figure 4 shows the training time ofRotom
compared to the baseline LM fine-tuning and MixDA. The training

time for InvDA overlaps with MixDA since we pre-compute and

cache the sequences generated by the seq2seq model. Rotom can

be trained in <20 minutes in all cases. The overhead compared to

the baseline DA method is only 5.6x on average and up to 9.8x.

This is much smaller than the search space of DA operators. For

example, enumerating all combinations of 2 token-/span-level op-

erators in Table 3 incurs a 22x overhead. In addition, we observe

that Rotom+SSL does not add significant overhead to Rotom as the

difference is within 30% of Rotom’s training time.



7 RELATEDWORK
Entity matching (EM). EM has been studied extensively in data

management, data mining, and NLP communities [25, 37] over

the last 20 years. One of the key challenges in EM [37] is the

pairwise matching problem, which determines if a given pair of

data entries refer to the same real-world entity. Many pairwise

matching methods treat the problem as a binary classification

problem and solve the problem using machine learning models,

such as decision trees [81], SVM [11], and CRF [56]. Recent solu-

tions [9, 18, 34, 49, 61, 95] adapt more advanced machine learning

models, in particular, deep learning models [34, 61] and pre-trained

models [9, 49, 95], to further improve the performance. As training

a highly accurate classification model often requires a substantial

number of labeled examples, people have also investigated active

learning to reduce the human annotation cost [3, 4, 18, 57, 75].

Error detection (EDT). EDT focuses on identifying erroneous

values in a dataset and it is the first step in the data cleaning pro-

cess [13]. Qualitative data cleaning [1, 7, 36, 71] employs rules or

integrity constraints to detect the erroneous data. Quantitative data

cleaning [30, 39], or outlier detection, on the other hand, focuses

on conducting statistical analysis to identify data values showing

abnormal distribution. Like EM, a new trend that using machine

learning models to identify erroneous values has emerged. Active-

Clean [40] dynamically trains a data cleaningmodel by interactively

collecting new labels from users; Raha [55] tries to improve the

training process by using an optimized representative value se-

lection/sampling technique; HoloDetect [29] enriches the training

dataset via a sophisticated task-specific data augmentation algo-

rithm. Likewise, these machine learning-based techniques also em-

ploy a variety of optimizations to minimize the amount of training

data. Leveraging machine learning while reducing human annota-

tion efforts also motivate Rotom.

Different from existing ML-based EM and EDT solutions that

focus on a single downstream task, Rotom is a versatile framework

applicable to a range of data management and mining tasks that

can be formulated as sequence classification.

Data augmentation (DA). Data augmentation (DA) has received

increasing attention recently in machine learning problems across

fields [16, 29, 41, 44, 86]. Commonly used generic simple DA opera-

tors for text data include word replacement [21, 35, 86, 94], word

insertion/deletion/swapping [86], and back translation [90]. A ma-

jor limitation of simple DA operators is that the generated examples

are lack of diversity. This is because such operators can only per-

form a few local transformations over existing training examples.

To overcome this limitation, recent works [2, 44] start using text

generation models (a.k.a. seq2seq model) to produce more diverse

examples conditioned on the given label. However, such generation-

based DA may over-diversify the augmented examples and they are

hard to train when the training set is too small, especially when the

vocabulary of class labels is large. Rotom further enriches the DA

family by introducing a novel DA operator InvDA. InvDA learns

to augment existing examples in a self-supervised manner, and

hence it can greatly reduce over-diversified examples and is loosely

restricted by the original training data sizes.

Automatic data augmentation and meta-learning. There has
been research on automating the process of discovering effective

DA policies. These techniques formulate DA as a learning task of

different optimization goals and solve them with different search

strategies. The most popular optimization objective is to minimize

the validation loss [16, 17, 32, 48, 50, 52, 63]. Other objectives in-

clude maximizing the similarity between distributions of the aug-

mented/unaugmented data [28, 51] and customized generative ad-

versarial objective [70]. Given an objective, to optimize a model

architecture, existing searching techniques often use Bayesian op-

timization [51], reinforcement learning [16, 32, 63, 70], and meta-

learning [28, 48, 50, 52]. Among these approaches, meta-learning-

based searching techniques show better efficiency since they use

gradient descent by differentiating the search space. In this paper,

Rotom adapts the most popular optimization objective (minimiz-

ing the validation loss) and the more efficient meta-learning-based

searching technique to select and combine augmented examples.

Training data collection in the DB community. To address

the needs for more training examples, the DB community has de-

veloped lines of work on data collection including data program-

ming [69, 82], crowdsourcing [26, 64], dataset discovery [22, 27],

and integrating data from multiple sources [72]. More recently, un-

der the setting where the dataset has multiple tables, researchers

have investigated whether joining tables can improve the perfor-

mance of the trained model [10, 43, 78]. Although sometimes also

referred to as data augmentation [10], these techniques aim at

adding effective features to each training example which is orthog-

onal to Rotom’s goal of adding more effective training examples.

These techniques can potentially be applied together with Rotom
to achieve better performance.

8 CONCLUSION AND DISCUSSION
We introduced Rotom, a meta-learned data augmentation frame-

work for data management and mining tasks. Rotom first leverages

multiple data augmentation techniques including an innovative

seq2seq-based operator InvDA. Next, Rotom adopts a meta-learning

framework to train policies for selecting and weighting augmented

examples jointly with the target model, thus it addresses the trade-

off between diversity and quality in data augmentation. Our results

show that the versatility of Rotom enables it to effectively combine

augmented examples by simple DA operators and InvDA as well as

unlabeled examples while training separately on these examples

does not improve the model’s performance; hence it outperforms

previous methods on all three tasks with limited labeled data.

Rotom is closely related to the line of research of training data de-

bugging/cleaningwith techniques developed based on constraints [14,

68], human inputs [15, 40], or machine learning models [20, 29, 55].

The idea of filtering and re-weighting the noisy training examples

would be directly applicable. Moreover, instead of relying on static

rules or ML models to separately clean training data, one can apply

Rotom’s principle of jointly training the cleaning operators with

the target model. We believe this is a promising direction for design-

ing a new data cleaning pipeline that is user-friendly and effective

for downstream ML tasks.
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