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Watchog: A Light-weight Contrastive Learning based
Framework for Column Annotation
ZHENGJIE MIAO,Megagon Labs, United States
JIN WANG∗,Megagon Labs, United States

Relational Web tables provide valuable resources for numerous downstream applications, making table
understanding, especially column annotation that identifies semantic types and relations of columns, a hot
topic in the field of data management. Despite recent efforts to improve different tasks in table understanding
by using the power of large pre-trained language models, existing methods heavily rely on large-scale and
high-quality labeled instances, while they still suffer from the data sparsity problem due to the imbalanced
data distribution among different classes. In this paper, we propose the Watchog framework, which employs
contrastive learning techniques to learn robust representations for tables by leveraging a large-scale unlabeled
table corpus with minimal overhead. Our approach enables the learned table representations to enhance fine-
tuning with much fewer additional labeled instances than in prior studies for downstream column annotation
tasks. Besides, we further proposed optimization techniques for semi-supervised settings. Experimental results
on popular benchmarking datasets illustrate the superiority of our proposed techniques in two column
annotation tasks under different settings. In particular, our Watchog framework effectively alleviates the
class imbalance issue caused by a long-tailed label distribution. In the semi-supervised setting, Watchog
outperforms the best-known method by up to 26% and 41% in Micro and Macro 𝐹1 scores, respectively, on the
task of semantic type detection.
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1 INTRODUCTION
The importance of Relational Web tables has been widely recognized in the data management
community, owing to the vast amount of knowledge they contain. Many large web table collections
have been constructed in previous studies [5, 9, 28]. Table understanding plays a significant role
in analyzing such table corpora [2, 3, 12], which can be leveraged for various data management
applications, e.g. schema matching, dataset discovery, and data cleaning.

As illustrated in [9], there are two major categories of table understanding applications, namely
table augmentation and table interpretation. Earlier studies [60, 61] provided feature-based methods
as a solution. For example, Zhang et al. explored featured engineering efforts in entity linking [60]
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and cell filling [61]. Hulsebos et al. [22] developed a feature-based framework for semantic type
annotation, and Zhang et al. [59] further improved it with topic modeling. However, these meth-
ods were limited in their generality. Recent years have witnessed the burgeoning of pre-trained
Language Models (LM) for NLP applications due to their ability to provide rich semantic and con-
textual information. Pre-trained LMs like BERT [10] have been widely applied in data management
applications and achieved promising results [30, 43]. Deng et al. [9] proposed the first work that
pre-trains an LM for multiple table understanding tasks, and several efforts have been made in the
NLP field [19, 23, 54, 55] on pre-training LMs specifically for tabular data. Additionally, Wang et
al. [45] and Suhara et al. [42] aimed at improving column annotation tasks, which is an essential
subset of the table interpretation application, via fine-tuning.
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Fig. 1. The counts of 78 class labels in the VizNet that is a typical long-tail distribution shown in [59]. The
data sparsity problem happens for most classes in the tail, even under a supervised setting.

Despite the impressive performance of previous fine-tuning basedmethods in table understanding
tasks, their effectiveness largely hinges on the availability of annotated training instances. For
example, the semantic type detection task in the TURL benchmarks [9] requires 628k labeled
columns from 397k tables. While the ground truth of some table understanding tasks can be
automatically generated by annotating the table corpus with a Knowledge Base (KB) [6] without
significant human efforts, existing solutions may still suffer from data sparsity issues in both KBs
and table corpus. For example, in Figure 1, the 78 semantic types in the VizNet dataset exhibit a
typical long-tail distribution. We can see that it is rather imbalanced, with a frequent type description
comprising 11,348 instances, while the minority types such as depth, ranking, and education only
have 136, 55, and 36 instances, respectively. As a result, it is difficult for models to capture sufficient
signals for types in the minority classes, even under supervised settings. Additionally, users need
to create specialized training sets for different tasks in the fine-tuning process. Since those tasks
have some shared knowledge in the unlabeled table corpus, such as [9], there will be certain wastes
in proposing separate training sets and models for each task.

In this paper, we introduce Watchog, a unified framework that addresses the challenges of data
sparsity and class imbalance in column annotation [32] tasks. Firstly, we employ the contrastive
learning [7, 8, 24] techniques to learn table representations from a vast collection of unlabeled table
corpus without any labeled instances. Then the learned table representations can be utilized in a
variety of downstream applications in different ways. For instance, they can be used to determine
the relatedness between two table units, such as columns from different tables, by computing the
cosine similarity between the embedding vectors; or can be employed in fine-tuning with only a few
additional labeled instances. Unlike other fine-tuning-based approaches that require a considerable
number of labeled instances for every single task, the embeddings generated byWatchog can be
used in various tasks with far fewer labeled instances. Meanwhile,Watchog is rather lightweight
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compared with previous studies [23, 55] that pre-train an LM for tabular data. In other words, with
the help of contrastive learning, we can obtain a similar level of versatility while avoiding the
expensive overhead of pre-training. The second major technique inWatchog is to utilize unlabeled
data in a semi-supervised manner. We further come up with (i) a pseudo-labeling technique that
can assign labels to unlabeled instances to obtain more training signals by leveraging the target
model in the current epoch and (ii) a balance-aware labeling method to include more instances
from minority and difficulty classes to resolve the data sparsity problem. With the help of such
techniques, our proposed framework can achieve comparable results with state-of-the-art methods
with less than half the number of labeled instances.

The contributions of this paper are summarized as follows:
• We propose a unified framework Watchog for column annotation based on contrastive
learning. It can train a column representation model from a table corpus without any labeled
instances. Then the pre-trained embeddings can be applied to various downstream tasks.
• We develop several optimizations for the semi-supervised scenario where the available labeled
instances are much fewer. To the best of our knowledge, it is the first work that studied the
problems of column annotation under semi-supervised settings.
• We conduct empirical studies on several popular benchmarking datasets. Experimental
results illustrate that Watchog achieved the best performance under all settings. Specifically,
Watchog can outperform the state-of-the-art method under the semi-supervised setting by
up to 26% and 41% in Micro F1 and Macro F1, respectively.
• Besides, we also showcase thatWatchog can clearly alleviate the issues caused by long-tail
label distribution. Watchog can improve the average F1 score for the bottom 50 classes in
the tail by up to 28% on the WikiTable dataset for semantic type detection.

The rest of this paper is organized as follows: Section 2 introduces necessary background
knowledge and the overall framework. Section 3 describes the contrastive-learning-based framework
for learning table representations. Section 4 proposes several semi-supervised learning techniques
under low resource settings for column annotation. Section 5 presents the experimental results.
Section 6 surveys the related works. Finally, Section 7 concludes the whole paper.

2 PRELIMINARY
In this section, we first introduce the terminology related to pre-trained language models in
Section 2.1. Then we formally define the table understanding tasks in Section 2.2. Finally, we give
an overview of our proposed framework in Section 2.3.

2.1 Pre-trained Language models
Recent years have witnessed a rapid advance in the application of large-scale, pre-trained language
models in almost all NLP tasks. The idea of pre-trained LMs originated from Elmo [36] that
aimed at learning contextual word embeddings by pre-training Bi-directional LSTM models. Then
BERT [10] replaced LSTM in Elmo with Transformer [44] based architecture, which is a stack of
self-attention layers that calculates distributed representations based on the similarity against all
tokens. The stack of multiple self-attention layers produced contextual embedding of each input
token. There are two steps for utilizing pre-trained LMs: pre-training and fine-tuning. In the pre-
training step, the language model is trained on a large unlabeled corpus such as Wikipedia to gain
deep language understanding via the designed pre-training tasks. For example, BERT defined two
novel pre-training tasks: masked language model and next sentence prediction. In the fine-tuning
step, the pre-trained model is fine-tuned with labeled training instances for the targeted task. This
way, all downstream tasks can benefit from the common knowledge acquired in the pre-training
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??? ??? ??? ???

Florence Nightingale 1820-05-12 Nurse Florence
Marie Curie 1867-11-07 Chemist Warsaw

Alan Turing 1912-06-23 Computer Scientist London

Johann Gauss 777-04-30 Mathematician Braunschweig

row annotation

table annotation

cell annotation

column-pair annotation

column annotation

Fig. 2. Illustration of table understanding tasks. In this paper, we focus on two column annotation tasks,
semantic type detection (Definition 2.1) and relation extraction (Definition 2.2).

step. Generally speaking, the pre-training step would be costly in the aspect of both hardware
resources and training time. Meanwhile, fine-tuning is much cheaper, and the inference time is
trivial compared with the fine-tuning time. And different kinds of pre-trained LM with similar
model sizes tend to have a similar amount of fine-tuning and inference time for the same task.

Our proposed Watchog framework can be considered an intermediate between pre-training and
fine-tuning. On the one hand, the contrastive learning process of Watchog is as lightweight as the
fine-tuning step. On the other hand, it has the advantage that the outcome of contrastive learning,
i.e., the trained table representations of Watchog, can provide shared knowledge for multiple
downstream tasks in the process of fine-tuning. In the rest of this paper, we use the checkpoint of
the pre-trained BERT model as the cornerstone to apply our proposed techniques.

2.2 Problem Definition
Table understanding is essential in many real scenarios. As shown in Figure 2, it is widely adopted in
different variants of table annotation applications. A web table𝑇 is associated with two components:
(i) the metadata𝑚 that includes information like the header, caption, or topic entities; (ii) the cell
values. The header of 𝑇 , denoted as 𝐻 , consists of 𝑛 columns ⟨𝐶1,𝐶2, · · · ,𝐶𝑛⟩. We use 𝐻𝑖 to denote
the name of the 𝑖-th column and 𝐶𝑖 to denote its cell values. Without generality, we assume that
the cell values can be regarded as plain texts that are a sequence of tokens. Next, we will show
the formal definitions of the two tasks, semantic type detection and relation extraction that are
formally defined in previous studies [9, 42].

Definition 2.1 (Semantic Type Detection). Given a table 𝑇 and a set of semantic types L, semantic
type detection aims at identifying a type label 𝑙 ∈ L for each column 𝐶 ∈ 𝑇 so that each cell in 𝐶
has the same semantic types.

Definition 2.2 (Relation Extraction). Given a table 𝑇 , a set of relations R and a pair of columns
𝐶𝑖 ,𝐶 𝑗 ∈ 𝑇 (𝑖 ≠ 𝑗), relation extraction aims at identifying a relation label 𝑟 ∈ R so that 𝑟 describes
the relation between all pairs of cells in the two columns.

Figure 2 shows a table about professionals to illustrate common table understanding tasks. In
this paper, we primarily focus on predicting semantic column types and relations between column
pairs. For example, the semantic type of the third row in the table is occupation, which can be
inferred from the cell values “Nurse”, “Chemist”, and so on. Moreover, for the first and second
rows, one could infer that their pairwise relation can be “is_born_on.” There are also other table
understanding tasks, such as row population, cell filling, schema augmentation, etc., for which our
framework can be extended to support by fine-tuning based on table representations learned from
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the contrastive learning process (in Section 3). Due to the space limitation, we leave it as future
work.

2.3 Overall Framework

Pretrained 
Column 
Encoder

Table

Contrastive Loss

Fine-tuningColumn 
Representation

Contrastive 
Learning

Semantic Type 
Detection 

Relation 
Extraction

Column 
Population

Meta-data 

?

?

? ?

Fig. 3. The Overall Architecture of Watchog

Figure 3 shows the overall architecture of Watchog. The goal of Watchog is to first train an
encoder for table representation, i.e., column encoder in this paper, without any labeled data and
then fine-tune the model based on column embeddings for different downstream applications with
only a few labeled instances. In the first step, the encoder is trained in a self-supervised manner
which is similar to but much cheaper than the pre-training step of language models. To reach
this goal, we need to make full use of available signals from the unlabeled table corpus to obtain
high-quality representations. We address this issue with contrastive learning techniques (Section 3).
Besides, improving the performance with much fewer labeled instances in the fine-tuning step is
also essential. To this end, we propose two novel techniques in Section 4 based on a semi-supervised
learning paradigm.

3 CONTRASTIVE LEARNING BASED FRAMEWORK
In this section, we describe how to employ contrastive learning techniques for column annotation
tasks. We first introduce the general learning process in Section 3.1. Then we define the data
augmentation operations for tabular data and use them in contrastive learning in Section 3.2.
Finally, we discuss the way to utilize meta-data to improve contrastive data creation in Section 3.3.

3.1 Learning Algorithms
Contrastive learning is a popular paradigm for self-supervised learning. It aims at learning a data
representation where similar instances are close to each other while dissimilar instances are far
away from each other in the embedding space. We adopt SimCLR [7], one of the most popular
contrastive learning algorithms, as the cornerstone of ourWatchog framework. The goal is to learn
an encoderM that encodes (a part of) a table into a high-dimensional vector representation. In
this paper, we treatM as a column encoder for ease of presentation. The proposed techniques can
be extended to train row or cell encoders similarly to support a wider scope of applications beyond
column annotation.

The high-level idea of SimCLR is shown in Figure 4. To train a column encoderM, we need to
address two issues: (i) to create contrastive data for the training process without labeled instances.
(ii) to define the contrastive loss function to minimize the distance between pairs of similar columns
and maximize that between distinct ones at the same time.
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Fig. 4. Contrastive learning for table understanding with SimCLR

The creation of contrastive data includes the positive and negative instances for each original
instance. The approach for positive data creation could vary for different applications. For tabular
data, we will treat the different semantic-preserving views of the original instance as positive
instances, e.g., in Figure 4 𝑋𝑎𝑢𝑔 is considered as a positive instance for the original instance 𝑋𝑜𝑟𝑖 . In
contrast, column 𝑌 , a different column, will be considered a negative instance. In order to generate
different views of a column, we devise a set of data augmentation operations for tables, which will
be detailed in Section 3.2 later. Meanwhile, creating negative instances is relatively straightforward:
we can directly sample over the set of columns different from the original instance.

To reach the goal of connecting relevant columns while separating irrelevant ones, we employ
contrastive loss over a batch of columns and their generated views. Given a batch of columns X
with 𝑛 original instances 𝑋𝑜𝑟𝑖 , we first use data augmentation operations to generate a different
view 𝑋𝑎𝑢𝑔 that preserves the original semantic types for each 𝑋 . We denote the embedding of 𝑋𝑜𝑟𝑖

and 𝑋𝑎𝑢𝑔 generated from the encoderM as 𝑽𝑜𝑟𝑖 and 𝑽𝑎𝑢𝑔, respectively. Then we merge 𝑽𝑎𝑢𝑔 with
𝑽𝑜𝑟𝑖 and formulate a batch 𝑽 with 2𝑛 instances. Given an instance 𝒗𝑖 ∈ 𝑽 where 𝒗𝑖 is an original
instance, suppose its augmented version is 𝒗 𝑗 ∈ 𝑽 , then the contrastive loss between the single pair
⟨𝑖, 𝑗⟩ could be calculated as in Equation (1):

ℓ (𝑖, 𝑗) = − log
exp

(
sim

(
𝒗𝑖 , 𝒗 𝑗

)
/𝑇

)∑2𝑛
𝑘=1 1[𝑘≠𝑖,𝑘≠𝑗 ] exp (sim (𝒗𝑖 , 𝒗𝑘 ) /𝑇 )

(1)

where sim is the similarity between two vectors, and here we use cosine similarity; 𝑇 is a hyper-
parameter that controls the portion that the similarity contributes to the loss calculation. By
minimizing such a loss between representations from the same column, we can maximize the score
sim(𝒗𝑖 , 𝒗 𝑗 ) while minimizing the similarity between 𝒗𝑖 and the representations of all other columns.
Following this route, we can further obtain the contrastive loss of the batch by averaging all

pairs of positive instances shown in Equation (2):

Lc =
1
2𝑛

𝑛∑
𝑘=1
[ℓ (𝑘, 𝑘 + 𝑛) + ℓ (𝑘 + 𝑛, 𝑘)] (2)

where each term ℓ (𝑘, 𝑘 +𝑛) and ℓ (𝑘 +𝑛, 𝑘) refers to pairs of views generated from the same column.
Based on the above discussion, we then describe the whole contrastive learning process in

Algorithm 1. It first initializes the column encoderM with the checkpoint of a pre-trained LM,
where in this paper, we use BERT 1 by default (line: 1). Next we perform randomly sampling in the
1https://huggingface.co/bert-base-uncased
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Algorithm 1: Contrastive learning with SimCLR
Input: A collection 𝐷 of table columns
Variables :Number of training epochs n_epoch;

Data augmentation operator op; Learning rate 𝜂
Output: A column encoderM

1 InitializeM using a pre-trained LM;
2 for ep = 1 to n_epoch do
3 Randomly split 𝐷 into batches {𝐵1, . . . 𝐵𝑛};
4 for 𝐵 ∈ {𝐵1, . . . 𝐵𝑛} do

/* augment and encode every item */

5 𝐵ori, 𝐵aug ← augment(𝐵, op);
6 𝑽ori, 𝑽aug ←M(𝐵ori),M(𝐵aug);

/* Equation (1) and (2) */

7 L ← Lc (𝑽ori, 𝑽aug);
/* Back-prop to update M */

8 M ← back-propagate(M, 𝜂, 𝜕L/𝜕M);

9 returnM;

table collection 𝐷 and generate 𝑛 batches 𝐵𝑖 , 𝑖 ∈ [1, 𝑛] (line: 3). Then we apply data augmentation
for each batch of columns to generate a different view of each column to provide the positive
instances for contrastive learning (line: 5). We encode each column withM and calculate the
contrastive loss using Equation (1) and (2) (line: 6 and 7). And the encoderM is updated with the
contrastive loss via back-propagation (line: 8).

We can make further improvements based on Algorithm 1. Firstly, we find it essential to involve
each column’s context in the learning process. When learning the representation of one column,
we should also take other columns in the same table into consideration. This can be realized by
feeding a set of columns into the LM-based column encoderM simultaneously in the process of
contrastive learning following the practice in [42]. To this end, the first step is to serialize the set of
columns into a sequence by concatenating their cell values. Then for each column, we can insert a
special token at the beginning of its values and use its output embedding as that of the column as
previous studies did [30, 42]. The pre-trained LM first converts the input sequence into a sequence
of token embedding independent of their context and then applies 12 Transformer layers, whose
self-attention mechanism then converts the token embedding into a sequence of contextualized
embeddings. In this way, each column representation depends not only on the tokens within itself
but also on the context of those in other columns. The augmented instances consist of a subset of
rows and columns in the original table. We will only take the embedding of the targeted column
when computing contrastive loss, although the sampling and augmentation operations are done on
the whole table.
Another finding is that in the process of generating positive pairs for contrastive learning, we

perform two data augmentations on the same original instance 𝑋𝑜𝑟𝑖 and generate two different
views 𝑋𝑎𝑢𝑔 and 𝑋 ′𝑎𝑢𝑔. Then instead of making pairs of 𝑋𝑜𝑟𝑖 and 𝑋 ′𝑎𝑢𝑔 as the positive instance, we
will treat the pair 𝑋𝑎𝑢𝑔 and 𝑋 ′𝑎𝑢𝑔 as a positive instance. The reason is that applying two data
augmentation operators increases the difficulty of the contrastive learning objective: if we make
positive pairs as the original instance and one augmented view of the instance, the overlap between
them should be much higher than the overlap between two different augmented views, which
makes learning the invariant properties easier. In other words, learning that the representations of
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two different augmented views are close should make the model “learn harder” than using only
one augmented view. The original SimCLR paper [8] has the same finding that performing data
augmentation only for one view works worse than using two augmented views.
To apply such improvements in Algorithm 1, we make the following changes: Firstly, when

sampling the batches of tables(line: 3), we keep the whole tables to be fed into the pre-trained LM
and later use each individual column embedding for computing the contrastive loss (line: 7). When
applying the data augmentation operators (line: 5), we generate two views with different operators
as positive instances.

3.2 Data Augmentation for Tables
Next, we introduce the data augmentation operations for creating different views of a column.
Data Augmentation (DA) is a popular technique to generate labeled instances without human
labors automatically [52]. It has been widely applied in many applications in the NLP and data
management fields [31]. The typical data augmentation operator for textual data includes the
replacement, insertion, deletion and swap of different granularities of text, i.e. token and span.
However, here we need to perform DA operators over tables; thus, such existing approaches cannot
be directly applied.

To solve this problem, we develop a series of DA operators for tables. Similar to DA operators for
textual data, we categorize the DA operators based on the levels of granularity they are applied on,
namely table, column, and row-level ones. The cell-level operators are general transformations also
used in related NLP tasks. The row and column-level operators cover different ways of creating
samples of rows/columns. The details of DA operators are summarized in Table 1. To use a DA
operator to create contrastive data, we first need to perform uniform sampling to obtain a set of
tables. Then the batches of columns mentioned in line 5 of Algorithm 1 are obtained from such
tables after applying the DA operator. One can also perform more complex transformations by
applying multiple operators simultaneously.

Table 1. DA operators for tables at different levels.

Level Operators Description

Cell drop_cell, drop_token,
swap_token,
repl_token

Dropping a random cell; Drop-
ping/swapping tokens within cells

Row sample_row,
shuffle_row

Sampling x% (e.g., 50) of rows; Shuf-
fling the row order

Col drop_col,
drop_num_col,
shuffle_col

Dropping𝑋 (numeric) columns;
Shuffling column order

In this work, we select the DA operators empirically based on the guidelines provided in [31].
We find that the combination of operators drop_col and shuffle_row provides the best overall
performance for all tasks. It is also possible to support automatically finding the best set of DA
operators with machine learning techniques following previous efforts like [34]. We will leave it as
a future work to explore.

3.3 Incorporation of Meta-data
Finally, we explore the method of utilizing the meta-data, i.e., the headers, captions, and topics, to
enhance the overall performance when such kinds of meta-data are available in the table corpus for
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contrastive learning. It is also common to use table meta-data when pre-training LMs on tabular
data [9, 55]. Since such information is essential in many tasks, it would be beneficial to include
them in the contrastive learning process. For example, column annotation tasks like semantic type
detection sometimes relate to the column headers. If we can include the headers in the contrastive
learning process, the learned column embedding with the same header will tend to be more similar.
As a result, it could save certain efforts in the fine-tuning process for the model to recognize such a
rule.
First, we introduce how to utilize header information. Recall that in the process of contrastive

data creation, we assume that a column is a positive instance for a given column if and only if it is
an augmented view of it. Otherwise, it will be regarded as a negative instance. With the help of the
header information, we can alleviate this constraint to that if a column has the same header name
as the original column, it could also be considered a positive instance. In this way, we can broaden
the scope of positive contrastive data using the signals provided by the headers. To apply this
optimization into Algorithm 1, we just need to replace Equation (2) with the following Equation (3)

L ′𝑐 =
1

2|𝐻 |
∑
(𝑖, 𝑗) ∈𝐻

[ℓ (𝑖, 𝑗) + ℓ ( 𝑗, 𝑖)] . (3)

where 𝐻 is the set of column pairs ⟨𝑖, 𝑗⟩ s.t. (i) columns 𝑖 and 𝑗 are different views of the same
column or (ii) 𝑖 and 𝑗 share the same header name.
Next, we discuss how to utilize the caption and topic entities. They could be considered as the

context of a table. There are two ways to utilize them: Firstly, we can follow the idea in [45] to
learn a contextual representation 𝑽𝑐𝑡𝑥 of them. Then given a column 𝑋 , its embedding will be the
element-wise product betweenM(𝑋 ) and 𝑽𝑐𝑡𝑥 . Secondly, we can calculate the cosine similarity
between the contextual representation vectors of the two tables. Then if two columns from these
two tables have the same header, we will consider there is a probability that they can form a positive
pair. And the probability could be decided by (or directly equal to) the cosine similarity between
the contextual representation vectors. Such techniques might have certain limitations if the data
quality of meta-data is not good. In such cases, more efforts in denoising are required before using
meta-data.

4 IMPROVING SEMI-SUPERVISED SETTINGS
4.1 Challenges
After training the column encoderM with contrastive learning, we can then conduct fine-tuning
over it in different downstream tasks. In previous studies based on pre-trained LM [9, 42, 45],
the fine-tuning process still requires hundreds of thousands of labeled instances. In this section,
we explore how to improve the performance in the process of fine-tuning when there are very
few labeled instances. To this end, we rely on semi-supervised learning techniques where models
learn from a small amount of labeled data and a large amount of unlabeled data. And the research
challenges to be resolved are as follows: Firstly, it is essential to make full use of the unlabeled data
to obtain rich signals for training. Secondly, due to the unbalanced distribution of labels in table
understanding tasks, some minority classes would suffer from the data sparsity problem. Thus,
how to collect enough training instances for such classes is also crucial to train a good model.

4.2 Consistency Regularization
First we introduce the technique of consistency regularization, which has been recently shown
to be an important component in semi-supervised learning [1, 4, 41]. Intuitively, consistency
regularization encourages the target model to make similar predictions on the perturbed variants
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of the same input example, which is crucial in assigning proper labels to unlabeled instances. This
is realized by data augmentation operators discussed in Section 3.2. Similar to self-supervised
contrastive learning, where the encoder learns to minimize the distance between different views
of the input column representation, consistency regularization lets the target model output close
probability distributions on different views of the input column for table understanding tasks.

For example, given an unlabeled column of person names, there could bemany possible candidates
of its semantic type. In the VizNet dataset, it could be either person, director, artist, and so on,
depending on the context. Although we do not have its ground truth label, the target model should
return similar probability distributions for the augmented view of this column, like a shuffled
version or a subset of the original column. This idea could be formalized as below:

For a multi-class classification problem, suppose we have a batch of 𝑏 labeled instances𝑊 and a
batch of 𝜇 · 𝑏 unlabeled ones𝑈 , where 𝑏 is the batch size, and 𝜇 is a hyper-parameter determining
the ratio of unlabeled to labeled instances. Each item in𝑊 is a pair of instance and the ground
truth label (𝑤𝑖 , 𝑦𝑖 ); And those in𝑈 only have the instance 𝑢𝑖 . For each 𝑢𝑖 we create 2 new instances
{𝑢1

𝑖 , 𝑢
2
𝑖 } via DA operators introduced in Section 3.2.

LetM(𝑤) be the predicted class distribution for an input example 𝑤 with the encoder in the
current epoch; the idea of consistency regularization is to minimize the loss function on the
unlabeled data defined in Equation (4):

1
𝜇𝑏

𝜇𝑏∑
𝑖=1
| | M(𝑢1

𝑖 ) −M(𝑢2
𝑖 ) | |2 (4)

4.3 Pseudo Labeling
Based on the idea of consistency regularization, we then propose a pseudo-labeling technique
to create training signals from unlabeled data. The basic idea of pseudo-labeling is to leverage
the prediction of the target modelM to obtain training signals [35]. The model’s prediction is a
probability distribution among different classes that can be further post-processed for classification.
A straightforward solution for pseudo-labeling is to assign a “hard” label to each unlabeled instance,
which adopts the class with the highest probability as the pseudo-label. Now the loss function on
the unlabeled data is

1
𝜇𝑏

𝜇𝑏∑
𝑖=1

1(max(M(𝑢1
𝑖 )) ≥ 𝜏) 𝐻 (pl(𝑢1

𝑖 ),M(𝑢2
𝑖 )) (5)

where 1() is the indicator function to select unlabeled examples with high confidence (probability
higher than the scalar hyper-parameter 𝜏) as training targets, pl(𝑢1

𝑖 ) = 𝑎𝑟𝑔max(M(𝑢1
𝑖 )) is the

“hard” one-hot pseudo-label for an augmented view of the unlabeled example 𝑢𝑖 , 𝐻 is the cross-
entropy loss. This loss function requires the target model’s output on the second augmented view
of the unlabeled example to match the pseudo-label.

4.4 Balance-aware Optimizations
With the help of pseudo-labeling, the performance of the target model can be obviously improved
since there are more training instances. However, it still cannot fully address the long-tail problem
in label distribution. The reason is that pseudo-labeled instances are selected according to the fixed
confidence threshold 𝜏 . Since the number of instances in minority classes is much smaller than
that of majority ones, the same imbalance distribution also tends to happen in the newly generated
instances. As shown in [17, 58], the issue of imbalanced distribution can even be aggravated under
semi-supervised settings because the pseudo-labels are still highly class-imbalanced and it will
lead to biased classification toward major classes. To solve this problem, we need to balance the
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unlabeled data fed to the target model via re-weighting or re-sampling the unlabeled data by a
factor inversely proportional to the number of examples of each class.
In this work, we resolve this problem by adjusting the selection criterion 1(max(M(𝑢1

𝑖 )) ≥ 𝜏)
in the loss function for unlabeled data (Equation 5) in the following ways: (1) we use the probability
class distribution by the target model as a “soft” label instead of using the one-hot “hard” label, and
(2) we adapt the idea of curriculum pseudo-labeling in [58] to adjust the confidence threshold 𝜏
dynamically. Intuitively, we want to feed the model with more instances in the classes with lower
accuracy by lowering the confidence threshold for those classes. This new unsupervised loss is
illustrated in Equation (6):

1
𝜇𝑏

𝜇𝑏∑
𝑖=1

1(max(M(𝑢1
𝑖 )) ≥ 𝜏 · 𝑝𝑟𝑜𝑝𝑡 (pl(𝑢1

𝑖 ))) 𝐻 (M(𝑢1
𝑖 ),M(𝑢2

𝑖 )) (6)

where 𝑝𝑟𝑜𝑝𝑡 (𝑐) is the proportion of unlabeled examples hard-labeled to class 𝑐 by the model at
epoch 𝑡 to the number of examples in the largest predicted class:

𝑝𝑟𝑜𝑝𝑡 (𝑐) =
∑𝜇𝑏

𝑖=1 1(𝑎𝑟𝑔max(M(𝑢𝑖 )) == 𝑐)
max𝑐

∑𝜇𝑏

𝑖=1 1(𝑎𝑟𝑔max(M(𝑢𝑖 )) == 𝑐)
(7)

With the standard classification loss on the labeled data:

L𝑙 = 𝐻 (𝑦𝑖 ,M(𝑤𝑖 )) (8)

the loss function for the semi-supervised setting is

L = L𝑙 + 𝜆𝑢L𝑢 (9)

where 𝜆𝑢 is a hyper-parameter denoting the ratio of unlabeled loss to labeled loss.
Finally we summarize the semi-supervised learning process in Algorithm 2.

Algorithm 2: Semi-supervised learning with balance-ware optimizations
Input:𝑊 : set of labeled examples;𝑈 : set of unlabeled examples
Variables :Number of training examples 𝑏; number of training epochs 𝐸; number of classes 𝐶;

the ratio of unlabeled examples 𝜇;
the confidence threshold 𝜏 ;

Output: the classification modelM
1 InitializeM using the LM-based column encoder;
2 for 𝑡 = 1 to 𝐸 do
3 for 𝑖 = 1 to 𝜇𝑏 do
4 CalculateM(𝑢1

𝑖
) and record the predicted class pl(𝑢1

𝑖
)

5 for 𝑐 = 1 to 𝐶 do
6 Calculate 𝑝𝑟𝑜𝑝𝑒 (𝑐) with Equation (7) ;
7 Calculate the loss L𝑙 , L𝑢 , and L with Equation (8), (6), (9) and back-propagate;
8 returnM;

5 EXPERIMENTS
5.1 Experiment Setup
5.1.1 Datasets. For the two tasks of semantic type detection and relation extraction, we evaluate
the proposed methods on VizNet [20] and WikiTable [9] datasets that are widely used in previous
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studies. WikiTable is a collection of web tables from Wikipedia 2 proposed in [9]. It provides
benchmarking datasets for both semantic type detection (ST) and relation extraction (RE) tasks. The
ground truth of semantic type detection is obtained by aligning Freebase with the web tables. There
are 255 semantic types and 570,171 tables in total. The training set consists of 628,254 columns
from 397,098 tables, while the validation and test set consists of 13,391 columns from 4,844 tables
and 13,025 columns from 4,764 tables, respectively. The ground truth of relation extraction is
constructed in a similar way. There are 121 relation types and 78,733 tables in total. The training
set consists of 62,954 column pairs from 52,943 tables, while the validation and test set consists of
2,175 column pairs from 1,560 tables and 2,072 column pairs from 1,467 tables, respectively. We
strictly follow the previous study for the split of training, validation, and test sets.

The VizNet dataset is processed in the previous study [59] on the basis of the VizNet corpus [20] 3.
It only provides the benchmarking dataset for the semantic type detection task. There are 78 column
types and 119,360 columns from 78,733 tables in total. We used the same splits for the 5-fold cross-
validation following that in [59].

To evaluate over the semi-supervised setting, we randomly sampled a subset of training instances
from the above datasets. Specifically, we try two sampling strategies: uniform and balanced ones.
• Uniform: We make sure that every class appears at least once. Based on that, we perform
uniform random sampling from the whole dataset to obtain a certain portion of columns.
The number of columns with each class label in the sampled dataset has a similar distribution
to that in the original dataset. In our experiments, we try to sample 2%, 5% and 10% of the
original dataset.
• Balanced: We randomly sample 𝑋 columns for each class label to make the sampled dataset
balanced. If the original dataset contains less than 𝑋 columns, we will include all the columns.
We try to set 𝑋 as 20, 50, and 100 in our experiments.

5.1.2 Baseline Methods. We choose the following existing solutions as baseline methods:
SATO [59] is a multi-column predictionmodel, which extracts features with different granularities

from the texts in a table to form the representation vector following the practice of Sherlock [22].
Besides, it also makes an extension by adding LDA features to capture table context and a CRF
layer to incorporate column type dependency into prediction.

TURL [9] is a pre-trained Transformer-based LM for table understanding. It pre-trains an LM
considering the structure of tables, so the model becomes more suitable for tabular data. To perform
column type/relation annotation, we fine-tuned the pre-trained TURL model on the same training
sets as for other baselines. We do not use entity and meta-data in fine-tuning for a fair comparison
with other methods.

Doduo [42] is a recent approach for column annotation based on pre-trained LMs. It employed
multi-task learning to train a model for different tasks jointly. And it is the state-of-the-art method
for the two tasks evaluated in this paper.

Starmie [13] employs contrastive learning to train a column encoder to support table search
related applications. We directly use the outcome of its contrastive learning approach as the starting
point for fine-tuning.

5.1.3 Evaluation Metrics. We follow previous studies and use 𝐹1 score as the primary evaluation
metric. Since the two tasks belong to the multi-class classification problem and the label distribution
is very imbalanced, we report the results of both Micro 𝐹1 and Marco 𝐹1. Specifically, the Macro 𝐹1

2https://github.com/sunlab-osu/TURL#data
3https://github.com/megagonlabs/sato/tree/master/table_data

Proc. ACM Netw., Vol. 1, No. N4 (SIGMOD), Article 272. Publication date: December 2023.



Watchog: A Light-weight Contrastive Learning based Framework for Column Annotation 272:13

is calculated by averaging the 𝐹1 score from all classes as Equation (10):

𝐹𝑚𝑎𝑐𝑟𝑜 =
1
𝐿

𝐿∑
𝑖=1

𝐹1 (𝑖) (10)

where 𝐿 is the number of classed and 𝐹1 (𝑖) is the 𝐹1 score of the i-th class. For the multi-class
classification task, the Macro 𝐹1 is more important in many situations, especially when the classes
have long-tail distribution.

5.1.4 Environment. We implementWatchog in Python using Pytorch and the Hugging Face Trans-
formers library. We use BERT [10] as the base language model for contrastive learning. We use
Adam [25] as the optimizer in the training process. All experiments are run on a server with config-
urations similar to those of a g5.12xlarge AWS EC2 machine with 4 Nvidia A10g GPUs. The server
has 1 AMD EPYC 7R32 48-Core processor and 192GB RAM. The hyper-parameter for fine-tuning
might differ in different tasks, which will be detailed in Section 5.2. We ran all experiments 5 times
and reported the average result.

5.1.5 Settings for Contrastive Learning. For the unsupervised contrastive learning process, we use
the same Wikitable corpus consisting of 570,171 tables as in TURL [9] and train our models for 10
epochs. In addition, we set the batch size to 32, the learning rate to 5e-5, the max sequence length
to 256, and the temperature hyper-parameter 𝑇 in Equations 1 to 0.05.

5.2 Main Results

Table 2. Main results under Supervised settings. ST and RE denote semantic type detection task and relation
extraction task, respectively.

Task Method Micro 𝐹1 Macro 𝐹1

WikiTable ST

TURL 88.86 69.95
Doduo 92.45 77.60
Starmie 92.36 77.00

Watchog w/o meta 92.53 76.06
Watchog 93.33 78.72

WikiTable RE

TURL 90.94 81.52
Doduo 91.90 84.73
Starmie 92.33 86.41

Watchog w/o meta 92.38 86.72
Watchog 92.98 88.45

VizNet ST

Sherlock 86.7 69.2
SATO 88.4 75.6
Doduo 94.3 84.6
Starmie 93.97 83.57

Watchog w/o meta 94.07 83.79
Watchog 95.02 85.63

5.2.1 Fully-supervised setting. We first look at the results in the supervised setting. For each
downstream task, we added an output layer on top of the language model for prediction. Following
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Table 3. The mean imbalance rate of training data under semi-supervised setting for two sampling strategies.

Balanced 𝑋 = 20 𝑋 = 50 𝑋 = 100
WikiTable ST 58.76 57.57 57.53
WikiTable RE 7.99 8.05 7.94
VizNet ST 7.61 18.58 33.74
Uniform 2% 5% 10%
WikiTable ST 3,698.00 9186.80 6584.89
WikiTable RE 251.40 335.87 250.01
VizNet ST 205.00 504.00 1018.20

Table 4. The cardinality of training data and the corresponding portion to the original dataset with the
balanced sampling strategy.

Task 𝑋 = 20 𝑋 = 50 𝑋 = 100
WikiTable ST 5,105 (0.8%) 12,552 (2%) 24,963 (3.9%)
WikiTable RE 3,606 (5.7%) 8,949 (14%) 17,800 (28.3%)
VizNet ST 1,934 (1.6%) 4,420 (3.7%) 7,765 (6.5%)

the settings in Doduo [42], we use cross-entropy loss for the VizNet dataset and binary cross-
entropy loss for the WikiTable dataset. For the fine-tuning phase, we choose the hyper-parameters
based on the performance on the validation set. For all tasks, we set the batch size to 32, the learning
rate to 5e-5, and the max sequence length to 256. We train all models for 30 epochs for VizNet ST
andWikiTable RE and 20 epochs forWikiTable ST. We report the performance of the epoch with
the highest Macro/Micro 𝐹1 score on the validation set.
The results are shown in Table 2. The choice of baseline methods for each task or dataset is

aligned with those in previous studies [9, 42, 59]. The methodWatchog w/o meta is the one in that
we do not include optimizations with metadata in the contrastive learning process, i.e., techniques
in Section 3.3. Since the original studies do not report results of Macro 𝐹1 score on WikiTable
dataset, we run experiments using the code provided by the authors and obtain the results by
ourselves. We can see that Watchog achieves the best performance under all settings. The reason
is that even under a fully supervised setting, the contrastive learning process can still bring some
benefits to the encoder to learn a better column representation, which also improves the fine-tuning
of different downstream applications. Specifically, compared with the Doduo method, which relies
on fine-tuning the pre-trained LMs,Watchog shows more significant improvement in Macro 𝐹1.
The reason could be that the proposed techniques can help provide more signals to the minority
classes to alleviate the data sparsity problem in those classes.

5.2.2 Semi-supervised setting. Next, we show the results under semi-supervised settings. We set
𝜆𝑢 = 0.005 for VizNet dataset and 𝜆𝑢 = 0.01 for WikiTable dataset. We use the same set of rest
hyper-parameters (𝜏 = 0.95, 𝜇 = 7, 𝑏=16) for all semi-supervised settings, except for WikiTable
RE 𝑋 = 100 we set 𝜇 = 3 because there are not that many examples in the training set. In the
experiments for semi-supervised settings, the number of labeled instances is crucial for the overall
performance. To ensure a fair comparison, we do not use the multi-task learning version of Doduo,
which might roughly double the number of labeled instances. We will still use the notion Doduo in
the following part if there is no ambiguity. We report the results of both sampling strategies. To
show the extent that imbalanced distribution happened under each sampling strategy, we provide
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Table 5. Main results under semi-supervised settings with uniform sampling. ST and RE denote the application
of semantic type detection and relation extraction, respectively.

Task Method 2% 5% 10%
Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1

WikiTable ST
TURL 1.16 0.03 79.45 22.24 84.46 43.67
Doduo 76.81 11.08 83.3 33.13 86.35 53.17
Starmie 77.57 11.98 83.59 33.00 86.33 54.07
Watchog 82.04 32.61 84.84 49.04 86.53 57.49

WikiTable RE
TURL 0 0 0 0 5.74 0.61
Doduo 3.33 0.47 49.63 12.58 75.34 46.88
Starmie 3.04 0.56 58.46 16.36 78.40 51.96
Watchog 64.91 26.66 80.33 60.11 84.32 71.98

VizNet ST
SATO 68.15 33.58 73.98 43.97 79.29 51.97
Doduo 74.19 38.39 81.86 52.32 85.73 62.03
Starmie 75.85 40.86 83.11 54.15 86.76 63.50
Watchog 80.72 48.89 85.74 58.31 88.52 67.01

the information on the imbalance rate for each dataset in Table 3. The definition of imbalance rate
is calculated by dividing the cardinality of the most frequent class and that of the least frequent
one. We can observe that the balanced sampling strategy can make the distribution relatively even
while the uniform one will keep the original distribution.

For the balanced sampling that requires the number of instances for each class instead of the
total number, we provide the cardinality of datasets as well as their portion of the original datasets
in Table 4 for clarification. The cardinality of datasets varies based on that of the original ones. For
example, on ST datasets, the cardinality from a balanced sampling strategy is smaller than that
of a uniform one because (i) the cardinality of original datasets is larger and (ii) there are a larger
number of classes, especially minority classes.

First, we look at the performance with the uniform strategy in Table 5. We can see thatWatchog
outperforms baseline methods by a significant margin. For example, on the semantic type detection
task over WikiTable dataset when the sampling rate is 2% and 5%, Watchog outperforms state-of-
the-art method Doduo in Macro 𝐹1 score by 21.53 and 15.91, respectively. Moreover, we can see that
the TURL method cannot produce reasonable outcomes for both tasks on the WikiTable dataset
under most settings. This illustrates that it is not feasible to directly apply fine-tuning methods
based on supervised settings, such as TURL and Doduo, to semi-supervised settings. Thus it is
essential to provide new techniques to address this problem. And our work fills this gap with the
help of proposed techniques such as pseudo labeling and balance aware optimization.
Then we report results of the balanced sampling strategy in Table 6. We can see that in this

situation, the advantage of Watchog is more remarkable over Doduo than that with uniform
sampling. The reason could be that Doduo is underfitting due to insufficient training instances for
the majority classes. Thus it is more difficult for Doduo to distinguish between different classes in
the test set. Meanwhile, TURL achieves some good results on the semantic type detection task on
Micro 𝐹1 when 𝑋 becomes larger. However, the overall results are still much worse than Watchog.
The reason could be that TURL tends to predict the majority classes while the performance on
minority classes is somewhat limited.
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Table 6. Main results under semi-supervised settingswith balanced sampling. ST and RE denote the application
of semantic type detection and relation extraction, respectively.

Task Method 𝑋 = 20 𝑋 = 50 𝑋 = 100
Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1

WikiTable ST
TURL 0 0 0.23 0.01 76.14 45.86
Doduo 50.04 1.84 75.68 36.48 79.74 56.82
Starmie 50.87 1.77 75.85 38.12 79.85 57.11
Watchog 76.31 43.05 79.02 56.41 80.50 57.97

WikiTable RE
TURL 0 0 0 0 78.17 69.28
Doduo 1.32 0.09 67.49 56.45 81.79 76.91
Starmie 2.96 0.27 75.39 66.50 83.17 79.29
Watchog 76.72 68.97 82.38 77.10 83.88 79.82

VizNet ST
SATO 47.59 33.86 53.81 37.59 59.11 41.62
Doduo 51.42 40.57 55.94 45.05 61.57 48.86
Starmie 50.17 40.27 56.18 45.72 60.50 48.32
Watchog 57.01 45.63 59.86 49.38 63.69 53.86

Table 7. Ablation study: semi-supervised settings with uniform sampling

Task Method 2% 5% 10%
Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1

WikiTable ST

Watchog 82.04 32.61 84.84 49.04 86.53 57.49
w/o BL 79.72 18.70 84.02 38.33 86.49 54.50
w/o BL+PS 78.52 12.75 84.47 35.75 86.07 55.46
w/o BL+PS+MT 77.44 11.75 83.71 33.58 86.69 54.32

WikiTable RE

Watchog 64.91 26.66 80.33 60.11 84.32 71.98
w/o BL 28.51 4.55 69.37 33.82 82.27 63.70
w/o BL+PS 2.57 0.39 57.43 15.82 80.50 57.06
w/o BL+PS+MT 3.54 0.47 60.38 18.51 78.93 53.42

VizNet ST

Watchog 80.72 48.89 85.74 58.31 88.52 67.01
w/o BL 80.21 47.45 85.58 58.77 88.09 66.63
w/o BL+PS 79.67 46.96 84.98 57.33 87.05 66.25
w/o BL+PS+MT 76.67 43.34 83.54 55.20 85.53 64.05

Finally, we want to discuss the efficiency of our proposed framework. As illustrated in Section 2.1
before, the bottleneck of the whole process is the contrastive learning process, while the fine-tuning
and inference time is similar for all methods. The contrastive learning process takes around 6.2
hours on average when running on 4 A10g GPUs in parallel using Distributed-Data-Parallel in
PyTorch. The peak memory usage is 63.9 GB in total on 4 GPUs, where each GPU has 24GB of
memory. The fine-tuning time for the three tasks on the full dataset using a single GPU is around
5.7, 23.8, and 5.0 hours, respectively. Meanwhile, the pre-trained LMs for tabular [23, 55] required
days or even weeks of training time with much more hardware resources. Thus our proposed
techniques can benefit multiple downstream tasks with much less overhead.
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Table 8. Ablation study: semi-supervised settings with balanced sampling

Task Method 𝑋 = 20 𝑋 = 50 𝑋 = 100
Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1 Micro 𝐹1 Macro 𝐹1

WikiTable ST

Watchog 76.31 43.05 79.02 56.41 80.50 57.97
w/o BL 76.45 42.90 78.16 40.52 79.78 57.82
w/o BL+PS 49.46 1.87 78.27 42.65 79.50 57.97
w/o BL+PS+MT 44.09 1.34 76.32 37.87 79.48 56.75

WikiTable RE

Watchog 76.72 68.97 82.38 77.10 83.88 79.82
w/o BL 33.48 10.28 80.57 74.38 83.79 79.50
w/o BL+PS 4.06 0.37 78.15 70.31 83.72 80.43
w/o BL+PS+MT 1.24 0.05 74.05 63.78 83.54 79.89

VizNet ST

Watchog 57.01 45.63 59.86 49.38 63.69 53.86
w/o BL 56.33 45.16 60.07 49.31 63.66 51.93
w/o BL+PS 55.89 43.84 59.09 47.13 63.58 51.10
w/o BL+PS+MT 51.92 41.02 56.30 45.59 60.94 50.35

5.3 Ablation Study
Next, we conduct some ablation studies to show the effect of each proposed technique under
semi-supervised settings. To this end, we evaluate 3 methods by removing the components one by
one. BL is the optimization of balancing the accuracy across classes when doing pseudo labeling
(Section 4.4). PS is the use of unlabeled data along with consistency regularization and pseudo
labeling techniques (Section 4.2 and 4.3).MT is the technique of utilizingmeta-data in the contrastive
learning process (Section 3.3). The results on uniformly sampled data are shown in Table 7. We
can see that the proposed techniques can help improve the overall performance in most cases.
For example, on the task of semantic type detection over WikiTable when the sampling rate is 2%,
the introduction of MT, PS, and BL can bring 1, 5.95, and 13.51 improvement in Macro 𝐹1 score,
respectively. Another finding is that the PS technique plays a significant role in improving the
overall performance under low-resource settings. For instance, on relation extraction where data
sparsity is the most serious, PS could bring 25.94 and 11.94 improvement in Micro 𝐹1 score when
the sampling rate is 2% and 5%, respectively. The reason might be it can help produce more labeled
instances by leveraging the unlabeled instances to provide richer signals for training. Besides, it is
also essential to introduce the BL in this case so as to feed the model with more labeled instances
from minority classes. Take the relation extraction task with sampling rate 2% as an example again,
when the BL can help improve the Micro and Macro 𝐹1 score by 31.86 and 16.18, respectively.
Finally, the improvement is not so significant on the task of semantic type detection over the VizNet
dataset. The reason could be that the data sparsity problem is relatively moderate, and thus, the
performance of all methods increases stably along with the sampling rate.

We also report the results on the balanced sampled dataset in Table 8. We can see that the results
show similar trends with those in Table 7. The performance is generally worse because the number
of involved training instances is smaller. One observation is that the benefit brought by the BL
technique is relatively smaller. The reason is that the balanced sampling strategy tends to include
more instances from the minority classes. Under the setting of 𝑋 = 100, the instances from some
minority classes will be almost fully covered. This could also be observed from the result of Macro
𝐹1 score: when 𝑋 equals 20 and 50, the cardinality of training data is smaller than that when the
sampling rate is 2% and 5% in most cases (Table 4). The Micro 𝐹1 is generally lower in this case, but
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Fig. 5. Average class F1 values of bottom classes for each method. Left: column type annotation on VizNet
(full), middle: column type annotation on WikiTable (full), right: relation extraction on WikiTable (full).

the Macro 𝐹1 is higher. When 𝑋 reaches 100, the performance is closer to that when the sampling
rate is 10%.

5.4 Further Exploration
5.4.1 Pre-trained LM for Tabular Data. Firstly, we make an initial exploration of applying the
contrastive learning techniques on pre-trained LM for tabular data instead of BERT variants.
Specifically, we choose TaBERT [55] as the cornerstone and perform contrastive learning techniques
proposed in Section 3. Then we perform fine-tuning for the semantic type detection and relation
extraction tasks in the same way as the above experiments. The experimental results are shown in
Table 9. The performance gain brought by contrastive learning for TaBERT is somewhat limited
compared with that of BERT variants. The reason could be that, unlike the original BERT, TaBERT
has obtained enough knowledge about table structure from pre-training; meanwhile, the corpus for
pre-training TaBERT is much larger than for contrastive learning (26M vs. 571K). TaBERT is also
optimized for learning the representation of both natural language utterances and the table, not only
for column representations. Thus, the benefit of our current contrastive learning strategies would be
limited for TaBERT. However, this comparison showcases the efficacy of our lightweight framework
asWatchog achieves better performance than TaBERT while avoiding the heavy pre-training. How
to devise contrastive learning techniques based on pre-trained LM for tabular data could be an
interesting problem for future work.

Table 9. Results of Contrastive Learning over TaBERT.

Task Method Micro F1 Macro F1

WikiTable ST TaBERT_Base (K=3) 91.23 70.35
TaBERT_Base (K=3) + CL 91.34 70.65

WikiTable RE TaBERT_Base (K=3) 90.84 79.96
TaBERT_Base (K=3) + CL 91.95 82.32

VizNet ST TaBERT_Base (K=3) 93.24 82.95
TaBERT_Base (K=3) + CL 93.13 83.16

5.4.2 Results on GitTables Corpus. Next, we show more results of the semantic type detection
task on another large table corpus GitTables [21] of relational tables. Since the corpus itself does
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not provide tasks with ground truth, we use the benchmark datasets in SemTab 2021 challenge 4

and SemTab 2022 challenge 5, which are generated from the GitTables corpus. For SemTab 2021,
we report the results of 5-fold cross-validation since the original dataset does not provide a split
of train/validation/test data. Each challenge involves different sub-tasks where the labels were
extracted from different ontologies (DBpedia and Schema.org).

The results on the SemTab 2021 and SemTab 2022 benchmark are shown in Table 10 and Table 11.
We can see thatWatchog shows clear advantages over Doduo on both tasks. Moreover, the best
method for these tasks from SemTab 2022 is KGCODE-Tab [29], which achieved 59, 69 and 62 in
Micro 𝐹1 on the DBpedia (SemTab 2022), Schema (SemTab 2022 class) and Schema (SemTab 2022
property) tasks, respectively. This performance is obviously worse than Watchog. We also tried
to conduct contrastive learning on Gittable corpus (denoted by (GT)) instead of wiki table one
(denoted by (WT)) shown in Table 11. The performance is slightly better due to the rich knowledge
obtained from the large corpus. This result further shows the potential benefits of our proposed
techniques.

Table 10. Results on GitTables SemTab 21 Semantic Type Annotation Tasks

Task DBpedia Schema
Method Micro-f1 Marco-f1 Micro-f1 Marco-f1
Doduo 66.83 29.22 78.92 45.10
Watchog (WT) 87.76 47.78 87.11 56.73
Watchog (GT) 87.84 49.70 87.38 60.06

Table 11. Results on GitTables SemTab 22 Semantic Type Annotation Tasks

Task DBpedia Schema (class) Schema (property)
method Micro-f1 Marco-f1 Micro-f1 Marco-f1 Micro-f1 Marco-f1
KGCODE-Tab [29] 59 - 69 - 62 -
Doduo 55.05 34.51 62.44 50.75 65.22 41.91
Watchog (WT) 59.44 39.67 69.56 58.09 70.66 49.44
Watchog (GT) 61.01 39.52 70.90 58.85 70.98 48.35

5.5 Case Study
In this section, we propose two case studies to show the potential value of our proposed framework
in practice.

5.5.1 Tail analysis. The first case study shows the breakdown performance ofWatchog onminority
classes belonging to the “long tail” under the supervised setting where the whole training set is
used in the fine-tuning process. For example, Table 12 presents the F1 values of the bottom-5 classes
by the baseline SATO [59]. Empowered by pre-trained LMs, both Doduo andWatchog significantly
outperform SATO. Meanwhile,Watchog further outperforms Doduo by a large margin. Specifically,
Watchog performs better on 4 out of 5 classes; the average improvement in 𝐹1 score is more than
10.3. For the WikiTable dataset, as there are more classes (255 for ST and 121 for RE), the long-tail
4https://zenodo.org/record/5706316
5https://sem-tab-challenge.github.io/2022/
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problem is more obvious. Table 13 shows that TURL performs poorly on many classes: 20 with 0 𝐹1
score and 74 with 𝐹1 score lower than 0.6 for ST; 16 classes with 𝐹1 score lower than 0.6 for RE. At
the same time, Watchog has the fewest number of classes with such low 𝐹1 scores.
To clearly illustrate the improvement ofWatchog, we further provide the average 𝐹1 score for

each method’s bottom classes in Figure 5. That is, we sort the 𝐹1 score of each class for every
compared method and take the bottom ones, where the set of bottom classes for each method might
differ. For all tasks,Watchog consistently outperforms other methods. Specifically, the advantage
ofWatchog over TURL remains significant when the number of classes increases forWikiTable ST,
and that over Doduo is still tangible even for bottom-50 classes. Therefore, Watchog can improve
the long-tail performance for all table understanding tasks with the help of contrastive learning. The
improvement in Macro 𝐹1 under semi-supervised settings ofWatchog also validates this conclusion.

Table 12. Class F1 values of the bottom-5 classes for column type annotation on the VizNet (full) dataset.

type ranking director person affiliate command
SATO 3.08 3.33 13.99 32.73 46.41
Doduo 25.65 41.06 33.64 45.71 57.30
Watchog 34.42 40.50 44.63 63.33 61.08

Table 13. Number of classes with low F1 value on the WikiTable dataset.

Task Column type annotation Relation extraction
Method TURL Doduo Watchog TURL Doduo Watchog

f1 = 0 20 7 4 7 6 5
f1 < 0.6 74 36 33 16 14 10

Table 14. Case study on column population. Our model only takes the seed header and seed column content
as input. The comments are shown here for better understanding and are not visible to the model.

Seed header Seed column content Target Predicted AP Comment

name [Smooth FM 89.9, Killer
Bee Cebu, i FM Sigu-
radong Enjoy Ka!, En-
ergy FM Cebu, ...]

company, format,
call sign, covered
location

covered location,
call sign, format,
company, genre

1 table of list of radio stations in
the Philippines

building [Beijing Station, Ching
Fu Shipbuilding, Co-
coon, Alto Vetro Tower,
...]

location, architect,
nationality

architect, location,
city, nationality,
country

0.92 table of RIBA International
award winners in 2009

5.5.2 Column population. Besides table understanding tasks, we demonstrate that our method
can also be applied to table augmentation tasks. Specifically, we showcase the column population
task, which aims to discover new columns from one seed column to widen the table. We use the
WikiTable dataset and follow the processing procedure in TURL [9] (with 316,858 training tables
and 4,646 test tables) while formulating the task as a multi-label classification task with 5,407
possible column headers. Note that we only rely on column headers and exclude other meta-data
information, such as table captions. Instead, our model takes a subset of the contents (cells in
the first column) as input. Specifically, we got the results of standard metrics as follows: mean
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average precision (MAP) as 79.88, mean reciprocal rank (MRR) as 83.63, and normalized discounted
cumulative gain (NDCG@10) as 82.94, which illustrates that Watchog can also support this task.
Table 14 shows two examples of howWatchog works for this task. Here we show the average

precision (AP) for each example. In the first example,Watchog correctly predicts all column headers
related to the header of radio station names. In the second example, although the precision is not
100%,Watchog retrieves all 3 ground truth headers in the top-4, and the other returned headers
(city, country) are close to the ground truth (location, nationality).

6 RELATEDWORK
6.1 Table Understanding
The table understanding tasks originated from the table annotation [32] application that aims at
annotating cells with entities (from an ontology) that the cell mentions, columns with ontology
types, and pairs of columns with ontology relationships. Earlier studies [37, 39] relied on hand-
crafted features to capture the semantics in tabular data and employed techniques like similarity
join based on syntactic similarity [48, 51] to identify the results. Sherlock [22] extracted features
from different granularities and then employed machine learning based approaches to predict the
semantic types for columns in web tables. SATO [59] made a further improvement on the basis
of it by incorporating topic models. Recently deep learning techniques have been widely applied
in table understanding applications. TCN [45] and Leva [62] utilized graph-based models to learn
the inter-table information to enhance the table representation learning. TURL [9] first employed
pre-trained LM to solve the problem of table understanding and provided benchmarking datasets
for 6 different tasks. Doduo [42] improved the performance of fine-tuning pre-trained LMs by
introducing multi-task learning.

6.2 Pre-trained Language Models
Pre-trained LMs have been a hot topic in natural language processing since the BERT model
became popular. Some efforts are made to improve the BERT model, such as reducing the model
size [27, 40], handling longer input sequence [26, 38] and improving the pre-training task [33].
Some recent studies utilized Pre-trained LMs for the application of entity matching [30, 46, 47, 57],
which requires to learn the embedding of rows instead of columns in tables. Many previous studies
aimed at pre-training a language model for tabular data that can be applied to several downstream
tasks such as semantic type detection, row/column population, and question answering over web
tables. TaBERT [55] defined novel pre-training tasks for tabular data by slicing the table via user
queries. Tabbie [23] and RCI [16] made further improvement based on it by incorporating both row
and column wise information. Tapas [19] and TableFormer [54] improved the pre-training step by
introducing additional encoding mechanisms. TabularNet [11] and TUTA [50] focused on tables
with complicated structures. All these works focus on the heavy weighted pre-training step and
are orthogonal to our work.

6.3 Contrastive Learning
Contrastive learning is a popular machine learning paradigm in self-supervised representation
learning for many applications. It has two essential components: contrastive data creation and
contrastive objective optimization [8]. Recently the machine learning community has made a huge
amount of efforts to improve either or both aspects of contrastive learning [7, 18, 24, 56]. Contrastive
learning has also been widely applied in NLP applications to train sentence representations in an
unsupervised manner to benefit one or several downstream applications [14, 15, 53]. Starmie [13]
also utilized contrastive learning for training a column encoder. However, Starmie focused on
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problems that have totally different settings from those in our paper: It aims at table search tasks
that are fully unsupervised, while our work focuses on column annotation tasks under supervised
and semi-supervised settings. Sudowoodo [49] employed contrastive learning for entity matching.
Its proposed techniques mainly targeted on the entity matching application and thus cannot be
direclty applied to our problem. To the best of our knowledge, our work is the first to employ
contrastive learning techniques for column annotation.

7 CONCLUSION
In this paper, we proposed to employ contrastive learning techniques to facilitate column annotation
tasks. To this end, we developed a novel and unified framework, namely Watchog, that enables
learning high-quality table representation models. These models could be applied to various
downstream applications with significantly fewer labeled instances. Unlike language models pre-
trained for tabular data, Watchog introduced much less overhead in training time while remaining
highly versatile. Moreover, we presented the first optimization technique for table understanding
under semi-supervised settings, which builds on the representation model learned from contrastive
learning. As a result,Watchog could deliver promising results in the fine-tuning process with limited
labeled instances. Experimental results on several tasks demonstrated that Watchog achieves state-
of-the-art performance, particularly in semi-supervised settings. Furthermore, we provided case
studies that showcase howWatchog can mitigate the long-tailed issue and enhance the performance
of various real-world applications. For future work, we plan to explore how to support other table
understanding tasks, such as row population, cell filling, and schema augmentation, with similar
methodology. Besides, we will also aim at devising specified contrastive learning techniques for
pre-trained LM for tabular data. Finally, we plan to create new benchmarking datasets for the
relation extraction task to comprehensively evaluate different solutions.
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